skip to Main Content

Project Bibliography

Bibliographies Grouped by Tag:
24 D | Adjuvants | Agricultural Health Study | Agrochemicals | AMPA | Analytical Methods | Atrazine | Autism | Biodiversity | Biomarkers | Biomonitoring | Birth Cohort Studies | Birth Defects | Birthweight | Cancer | Children | Chlorpyrifos | Climate Change | Communicating Science | Crop Science | Cumulative Toxicity | Cypermethrin | Cytotoxicity | DDT | Desiccation | Developmental Impacts | Diazinon | Dicamba | Dicamba Part I | Dicamba Part II | Dicamba Part III | Dicamba Watch | Diet | Dietary Risk | Diversified Weed Management/Integrated Pest Management (IPM) | DNA Damage | Economics | Endocrine Disruptors | Endosulfan | Environmental Health | Environmental Impacts | Environmental Racism | EPA Regulation | Epidemiological Studies | Epigenetic Impacts | Ethics and Environmental Justice | ethnicity | Exposure | Exposure at School and Public Spaces | Exposure in Pets | Female Reproductive Impacts | Fertility | Food Systems | Full Text Available | Fungicides | Gastrointestinal Impacts | GBH | Gender | Genetically Modified Crops | Genotoxicity | Gestational Length | Glufosinate | Glyphosate | Heartland Region | Herbicide Exposure | Herbicide Industry Labels and User Guides | Herbicide Use | Herbicides | HHRA Publication | Imidacloprid | Insecticides | Invertebrate Toxicity | Kidney Disease | Liver Damage | Lowdown on Roundup Part I | Lowdown on Roundup Part II | Lowdown on Roundup Part III | Lowdown on Roundup Part IV | Male Reproductive Impacts | Maternal Gut Microbiome | Meta-Analysis or Review Paper | Metolachlor | Microbiome | Miscarriage Rate | Multi-omics | National Cancer Institute | Neonicotinoids | Neurodevelopmental Toxicity | Nitric Oxide | Obesity | Occupational Exposure | Organic | Organic vs Conventional | Organochlorines | Organophosphates | Other Health Risks | Oxamyl | Oxidative Stress | Paraquat | Parkinson's Disease | Persistent Organic Pollutants | Pesticide Drift | Pesticide Effectiveness | Pesticide Exposure | Pesticide Legislation | Pesticide Registration | Pesticide Residues | Pesticide Resistance | Pesticide Toxicity | Pesticide Use | Policy and Politics | Pollinators | Pregestational Obesity | Pregnancy | prenatal | Public Health | Pyrethroids | Regenerative Agriculture | Remediation | Reproductive Impacts | Resistant Weeds | Risk Assessment | Roundup | Rural Health | Science Team Publication | Seasonal | Soil Health | Sperm Quality | Surfactants | Toxicity | Traizoles | Trends Analysis | Weed Management Systems
Combine bibliography tags from the above list:

Skinner et al., 2013a

Skinner MK, Guerrero-Bosagna C, Haque M, Nilsson E, Bhandari R, McCarrey JR, “Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line,” PLoS One, 2013, 8:7, DOI: 10.1371/journal.pone.0066318.  (Erratum in PLoS One. 2013;8(7). DOI:10.1371/annotation/7683bb48-85db-4c7e-87c0-304a7d53a587.)

ABSTRACT: A number of environmental factors (e.g. toxicants) have been shown to promote the epigenetic transgenerational inheritance of disease and phenotypic variation. Transgenerational inheritance requires the germline transmission of altered epigenetic information between generations in the absence of direct environmental exposures. The primary periods for epigenetic programming of the germ line are those associated with primordial germ cell development and subsequent fetal germline development. The current study examined the actions of an agricultural fungicide vinclozolin on gestating female (F0 generation) progeny in regards to the primordial germ cell (PGC) epigenetic reprogramming of the F3 generation (i.e. great-grandchildren). The F3 generation germline transcriptome and epigenome (DNA methylation) were altered transgenerationally. Interestingly, disruptions in DNA methylation patterns and altered transcriptomes were distinct between germ cells at the onset of gonadal sex determination at embryonic day 13 (E13) and after cord formation in the testis at embryonic day 16 (E16). A larger number of DNA methylation abnormalities (epimutations) and transcriptional alterations were observed in the E13 germ cells than in the E16 germ cells. These observations indicate that altered transgenerational epigenetic reprogramming and function of the male germline is a component of vinclozolin induced epigenetic transgenerational inheritance of disease. Insights into the molecular control of germline transmitted epigenetic inheritance are provided.   FULL TEXT


Skinner et al., 2013b

Skinner MK, Manikkam M, Tracey R, Guerrero-Bosagna C, Haque M, Nilsson EE, “Ancestral dichlorodiphenyltrichloroethane (DDT) exposure promotes epigenetic transgenerational inheritance of obesity,” BMC Medicine, 2013, 11:228, DOI: 10.1186/1741-7015-11-228.

ABSTRACT:

BACKGROUND: Ancestral environmental exposures to a variety of environmental factors and toxicants have been shown to promote the epigenetic transgenerational inheritance of adult onset disease. The present work examined the potential transgenerational actions of the insecticide dichlorodiphenyltrichloroethane (DDT) on obesity and associated disease.

METHODS: Outbred gestating female rats were transiently exposed to a vehicle control or DDT and the F1 generation offspring bred to generate the F2 generation and F2 generation bred to generate the F3 generation. The F1 and F3 generation control and DDT lineage rats were aged and various pathologies investigated. The F3 generation male sperm were collected to investigate methylation between the control and DDT lineage male sperm.

RESULTS: The F1 generation offspring (directly exposed as a fetus) derived from the F0 generation exposed gestating female rats were not found to develop obesity. The F1 generation DDT lineage animals did develop kidney disease, prostate disease, ovary disease and tumor development as adults. Interestingly, the F3 generation (great grand-offspring) had over 50% of males and females develop obesity. Several transgenerational diseases previously shown to be associated with metabolic syndrome and obesity were observed in the testis, ovary and kidney. The transgenerational transmission of disease was through both female (egg) and male (sperm) germlines. F3 generation sperm epimutations, differential DNA methylation regions (DMR), induced by DDT were identified. A number of the genes associated with the DMR have previously been shown to be associated with obesity.

CONCLUSIONS: Observations indicate ancestral exposure to DDT can promote obesity and associated disease transgenerationally. The etiology of disease such as obesity may be in part due to environmentally induced epigenetic transgenerational inheritance.   FULL TEXT


Schreinemachers, 2003

Schreinemachers DM, “Birth malformations and other adverse perinatal outcomes in four U.S. Wheat-producing states,” Environmental Health Perspectives, 2003, 111:9.

ABSTRACT: Chlorophenoxy herbicides are widely used in the United States and Western Europe for broadleaf weed control in grain farming and park maintenance. Most of the spring and durum wheat produced in the United States is grown in Minnesota, Montana, North Dakota, and South Dakota, with more than 85% of the acreage treated with chlorophenoxy herbicides such as 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid (MCPA). Rates of adverse birth outcomes in rural, agricultural counties of these states during 1995-1997 were studied by comparing counties with a high proportion of wheat acreage and those with a lower proportion. Information routinely collected and made available by federal agencies was used for this ecologic study. Significant increases in birth malformations were observed for the circulatory/respiratory category for combined sexes [odds ratio (OR) = 1.65; 95% confidence interval (CI), 1.07-2.55]. A stronger effect was observed for the subcategory, which excluded heart malformations (OR = 2.03; 95% CI, 1.14-3.59). In addition, infants conceived during April-June–the time of herbicide application–had an increased chance of being diagnosed with circulatory/respiratory (excluding heart) malformations compared with births conceived during other months of the year (OR = 1.75; 95% CI, 1.09-2.80). Musculoskeletal/integumental anomalies increased for combined sexes in the high-wheat counties (OR = 1.50; 95% CI, 1.06-2.12). Infant death from congenital anomalies significantly increased in high-wheat counties for males (OR = 2.66; 95% CI, 1.52-4.65) but not for females (OR = 0.48; 95% CI, 0.20-1.15). These results are especially of concern because of widespread use of chlorophenoxy herbicides.   FULL TEXT


Schreinemachers, 2010

Schreinemachers DM, “Perturbation of lipids and glucose metabolism associated with previous 2,4-D exposure: a cross-sectional study of NHANES III data, 1988-1994,” Environmental Health, 2010, 9:11, DOI: 10.1186/1476-069X-9-11.

ABSTRACT:

BACKGROUND:
Results from previous population studies showed that mortality rates from acute myocardial infarction and type-2 diabetes during the 1980s and 1990s in rural, agricultural counties of Minnesota, Montana, North and South Dakota, were higher in counties with a higher level of spring wheat farming than in counties with lower levels of this crop. Spring wheat, one of the major field crops in these four states, was treated for 85% or more of its acreage with chlorophenoxy herbicides. In the current study NHANES III data were reviewed for associations of 2,4-dichlorophenoxy acetic acid (2,4-D) exposure, one of the most frequently used chlorophenoxy herbicides, with risk factors that are linked to the pathogenesis of acute myocardial infarction and type-2 diabetes, such as dyslipidemia and impaired glucose metabolism.

METHODS:
To investigate the toxicity pattern of chlorophenoxy herbicides, effects of a previous 2,4-D exposure were assessed by comparing levels of lipids, glucose metabolism, and thyroid stimulating hormone in healthy adult NHANES III subjects with urinary 2,4-D above and below the level of detection, using linear regression analysis. The analyses were conducted for all available subjects and for two susceptible subpopulations characterized by high glycosylated hemoglobin (upper 50th percentile) and low thyroxine (lower 50th percentile).

RESULTS:
Presence of urinary 2,4-D was associated with a decrease of HDL levels: 8.6% in the unadjusted data (p-value = 0.006), 4.8% in the adjusted data (p-value = 0.08), and 9% in the adjusted data for the susceptible subpopulation with low thyroxine (p-value = 0.02). An effect modification of the inverse triglycerides-HDL relation was observed in association with 2,4-D. Among subjects with low HDL, urinary 2,4-D was associated with increased levels of triglycerides, insulin, C-peptide, and thyroid stimulating hormone, especially in the susceptible subpopulations. In contrast, subjects with high HDL did not experience adverse 2,4-D associated effects.

CONCLUSIONS:
The results indicate that exposure to 2,4-D was associated with changes in biomarkers that, based on the published literature, have been linked to risk factors for acute myocardial infarction and type-2 diabetes.  FULL TEXT


Rusiecki et al., 2017

Rusiecki JA, Beane Freeman LE, Bonner MR, Alexander M, Chen L, Andreotti G, Barry KH, Moore LE, Byun HM, Kamel F, Alavanja M, Hoppin JA, Baccarelli A,”High pesticide exposure events and DNA methylation among pesticide applicators in the agricultural health study,” Environmental and Molecular Mutagenesis, 2017, 58:1, DOI: 10.1002/em.22067.

ABSTRACT: Pesticide exposure has been associated with acute and chronic adverse health effects. DNA methylation (DNAm) may mediate these effects. We evaluated the association between experiencing unusually high pesticide exposure events (HPEEs) and DNAm among pesticide applicators in the Agricultural Health Study (AHS), a prospective study of applicators from Iowa and North Carolina. DNA was extracted from whole blood from male AHS pesticide applicators (n = 695). Questionnaire data were used to ascertain the occurrence of HPEEs over the participant’s lifetime. Pyrosequencing was used to quantify DNAm in CDH1, GSTp1, and MGMT promoters, and in the repetitive element, LINE-1. Linear and robust regression analyses evaluated adjusted associations between HPEE and DNAm. Ever having an HPEE (n = 142; 24%) was associated with elevated DNAm in the GSTp1 promoter at CpG7 (chr11:67,351,134; P < 0.01) and for the mean across the CpGs measured in the GSTp1 promoter (P < 0.01). In stratified analyses, elevated GSTP1 promoter DNAm associated with HPEE was more pronounced among applicators >59 years and those with plasma folate levels ≤16.56 ng/mL (p-interaction <0.01); HPEE was associated with reduced MGMT promoter DNAm at CpG2 (chr10:131,265,803; P = 0.03), CpG3 (chr10:131,265,810; P = 0.05), and the mean across CpGs measured in the MGMT promoter (P = 0.03) among applicators >59 years and reduced LINE-1 DNAm (P = 0.05) among applicators with ≤16.56 ng/mL plasma folate. Non-specific HPEEs may contribute to increased DNAm in GSTp1, and in some groups, reduced DNAm in MGMT and LINE-1. The impacts of these alterations on disease development are unclear, but elevated GSTp1 promoter DNAm and subsequent gene inactivation has been consistently associated with prostate cancer.


Rocheleau et al., 2009

Rocheleau CM, Romitti PA, Dennis LK, “Pesticides and hypospadias: a meta-analysis.,” Journal of Pediatric Urology, 2009, 5:1, DOI: 10.1016/j.jpurol.2008.08.006.

ABSTRACT:

OBJECTIVE: To use meta-analytic techniques to synthesize the findings of the current body of published literature regarding the risk of hypospadias resulting from parental exposure to pesticides.

MATERIALS AND METHODS: A search of Pub Med for original research published in English from January 1966 through March 2008 identified 552 studies, 90 of which were reviewed in detail. Nine studies met all study inclusion criteria. Two reviewers independently abstracted data from each included study. Any disagreements were resolved by consensus. Pooled risk ratios (PRRs) and confidence intervals (CIs) were calculated using both random and fixed effects models, along with statistical tests of homogeneity.

RESULTS: Elevated but marginally significant risks of hypospadias were associated with maternal occupational exposure (PRR of 1.36, CI=1.04-1.77), and paternal occupational exposure (PRR of 1.19, CI=1.00-1.41). Subgroup analyses provided insights into needed designs for future studies. Notably, exposure assessment using a job-exposure matrix resulted in slightly higher estimated risk than agricultural occupation in fathers; but this effect was reversed in mothers, suggesting the importance of indirect and residential pesticide exposures in this group.

CONCLUSIONS: Despite potential exposure misclassification, which would tend to diminish observed associations, the previous literature indicates a modestly increased risk of hypospadias associated with pesticide exposure.   FULL TEXT


Rocheleau et al., 2015

Rocheleau CM, Bertke SJ, Lawson CC, Romitti PA, Sanderson WT, Malik S, Lupo PJ, Desrosiers TA, Bell E, Druschel C, Correa A, Reefhuis J, “Maternal occupational pesticide exposure and risk of congenital heart defects in the National Birth Defects Prevention Study,” Birth Defects Research Part A, Clinical and Molecular Teratololgy, 2015, 103:10, DOI: 10.1002/bdra.23351.

ABSTRACT:

BACKGROUND: Congenital heart defects (CHDs) are common birth defects, affecting approximately 1% of live births. Pesticide exposure has been suggested as an etiologic factor for CHDs, but previous results were inconsistent.

METHODS: We examined maternal occupational exposure to fungicides, insecticides, and herbicides for 3328 infants with CHDs and 2988 unaffected control infants of employed mothers using data for 1997 through 2002 births from the National Birth Defects Prevention Study, a population-based multisite case-control study. Potential pesticide exposure from 1 month before conception through the first trimester of pregnancy was assigned by an expert-guided task-exposure matrix and job history details self-reported by mothers. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using multivariable logistic regression.

RESULTS: Maternal occupational exposure to pesticides was not associated with CHDs overall. In examining specific CHD subtypes compared with controls, some novel associations were observed with higher estimated pesticide exposure: insecticides only and secundum atrial septal defect (OR = 1.8; 95% CI, 1.3-2.7, 40 exposed cases); both insecticides and herbicides and hypoplastic left heart syndrome (OR = 5.1; 95% CI, 1.7-15.3, 4 exposed cases), as well as pulmonary valve stenosis (OR = 3.6; 95% CI, 1.3-10.1, 5 exposed cases); and insecticides, herbicides, and fungicides and tetralogy of Fallot (TOF) (OR = 2.2; 95% CI, 1.2-4.0, 13 exposed cases).

CONCLUSION: Broad pesticide exposure categories were not associated with CHDs overall, but examining specific CHD subtypes revealed some increased odds ratios. These results highlight the importance of examining specific CHDs separately. Because of multiple comparisons, additional work is needed to verify these associations.   FULL TEXT


Rissman and Adli, 2014

Rissman EF, Adli M, “Minireview: transgenerational epigenetic inheritance: focus on endocrine disrupting compounds,” Endocrinology, 2014, 155:8, DOI: 10.1210/en.2014-1123.

ABSTRACT: The idea that what we eat, feel, and experience influences our physical and mental state and can be transmitted to our offspring and even to subsequent generations has been in the popular realm for a long time. In addition to classic gene mutations, we now recognize that some mechanisms for inheritance do not require changes in DNA. The field of epigenetics has provided a new appreciation for the variety of ways biological traits can be transmitted to subsequent generations. Thus, transgenerational epigenetic inheritance has emerged as a new area of research. We have four goals for this minireview. First, we describe the topic and some of the nomenclature used in the literature. Second, we explain the major epigenetic mechanisms implicated in transgenerational inheritance. Next, we examine some of the best examples of transgenerational epigenetic inheritance, with an emphasis on those produced by exposing the parental generation to endocrine-disrupting compounds (EDCs). Finally, we discuss how whole-genome profiling approaches can be used to identify aberrant epigenomic features and gain insight into the mechanism of EDC-mediated transgenerational epigenetic inheritance. Our goal is to educate readers about the range of possible epigenetic mechanisms that exist and encourage researchers to think broadly and apply multiple genomic and epigenomic technologies to their work. FULL TEXT


Richard et al., 2005

Richard S, Moslemi S, Sipahutar H, Benachour N, Seralini GE, “Differential effects of glyphosate and roundup on human placental cells and aromatase, ” Environmental Health Perspectives, 2005, 113:6.

ABSTRACT:

Roundup is a glyphosate-based herbicide used worldwide, including on most genetically modified plants that have been designed to tolerate it. Its residues may thus enter the food chain, and glyphosate is found as a contaminant in rivers. Some agricultural workers using glyphosate have pregnancy problems, but its mechanism of action in mammals is questioned. Here we show that glyphosate is toxic to human placental JEG3 cells within 18 hr with concentrations lower than those found with agricultural use, and this effect increases with concentration and time or in the presence of Roundup adjuvants. Surprisingly, Roundup is always more toxic than its active ingredient. We tested the effects of glyphosate and Roundup at lower nontoxic concentrations on aromatase, the enzyme responsible for estrogen synthesis. The glyphosate-based herbicide disrupts aromatase activity and mRNA levels and interacts with the active site of the purified enzyme, but the effects of glyphosate are facilitated by the Roundup formulation in microsomes or in cell culture. We conclude that endocrine and toxic effects of Roundup, not just glyphosate, can be observed in mammals. We suggest that the presence of Roundup adjuvants enhances glyphosate bioavailability and/or bioaccumulation.  FULL TEXT


Rappazzo et al., 2016

Rappazzo KM, Warren JL, Meyer RE, Herring AH, Sanders AP, Brownstein NC, Luben TJ, “Maternal residential exposure to agricultural pesticides and birth defects in a 2003 to 2005 North Carolina birth cohort,” Birth Defects Research Part A, Clinical and Molecular Teratolology, 2016, 106:4, DOI: 10.1002/bdra.23479.

ABSTRACT:

BACKGROUND: Birth defects are responsible for a large proportion of disability and infant mortality. Exposure to a variety of pesticides have been linked to increased risk of birth defects.

METHODS:  We conducted a case-control study to estimate the associations between a residence-based metric of agricultural pesticide exposure and birth defects. We linked singleton live birth records for 2003 to 2005 from the North Carolina (NC) State Center for Health Statistics to data from the NC Birth Defects Monitoring Program. Included women had residence at delivery inside NC and infants with gestational ages from 20 to 44 weeks (n = 304,906). Pesticide exposure was assigned using a previously constructed metric, estimating total chemical exposure (pounds of active ingredient) based on crops within 500 meters of maternal residence, specific dates of pregnancy, and chemical application dates based on the planting/harvesting dates of each crop. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals for four categories of exposure (<10(th) , 10-50(th) , 50-90(th) , and >90(th) percentiles) compared with unexposed. Models were adjusted for maternal race, age at delivery, education, marital status, and smoking status.

RESULTS:  We observed elevated ORs for congenital heart defects and certain structural defects affecting the gastrointestinal, genitourinary and musculoskeletal systems (e.g., OR [95% confidence interval] [highest exposure vs. unexposed] for tracheal esophageal fistula/esophageal atresia = 1.98 [0.69, 5.66], and OR for atrial septal defects: 1.70 [1.34, 2.14]).

CONCLUSION: Our results provide some evidence of associations between residential exposure to agricultural pesticides and several birth defects phenotypes.


Back To Top
Search