Maggi et al., 2020
Maggi, Federico, la Cecilia, Daniele, Tang, Fiona H. M., & McBratney, Alexander; “The global environmental hazard of glyphosate use;” Science of The Total Environment, 2020, 717; DOI: 10.1016/j.scitotenv.2020.137167.
ABSTRACT:
Agricultural pesticides can become persistent environmental pollutants. Among many, glyphosate (GLP) is under particular scrutiny because of its extensive use and its alleged threats to the ecosystem and human health. Here, we introduce the first global environmental contamination analysis of GLP and its metabolite, AMPA, conducted with a mechanistic dynamic model at 0.5×0.5 degree spatial resolution (about 55 km at the equator) fed with geographically-distributed agricultural quantities, soil and biogeochemical properties, and hydroclimatic variables. Our analyses reveal that about 1% of croplands worldwide (385,000 km2) are susceptible to mid to high contamination hazard and less than 0.1% has a high hazard. Hotspots found in South America, Europe, and East and South Asia were mostly correlated to widespread GLP use in pastures, soybean, and corn; diffuse contributing processes were mainly biodegradation recalcitrance and persistence, while soil residue accumulation and leaching below the root zone contributed locally to the hazard in hotspots. Hydroclimatic and soil variables were major controlling factors of contamination hotspots. The relatively low risk of environmental exposure highlighted in our work for a single active substance does not rule out a greater recognition of environmental pollution by pesticides and calls for worldwide cooperation to develop timely standards and implement regulated strategies to prevent excess global environmental pollution. FULL TEXT
Hendershot et al., 2020
Hendershot, J. Nicholas, Smith, Jeffrey R., Anderson, Christopher B., Letten, Andrew D., Frishkoff, Luke O., Zook, Jim R., Fukami, Tadashi, & Daily, Gretchen C.; “Intensive farming drives long-term shifts in avian community composition;” Nature, 2020, 579(7799), 393-396; DOI: 10.1038/s41586-020-2090-6.
ABSTRACT:
Agricultural practices constitute both the greatest cause of biodiversity loss and the greatest opportunity for conservation. However, little is known about the long-term effects of alternative , given the shrinking scope of protected areas in many regions. Recent studies have documented the high levels of biodiversity— across many taxa and biomes—that agricultural landscapes can support over the short term agricultural practices on ecological communities. Here we document changes in bird communities in intensive-agriculture, diversified-agriculture and natural-forest habitats in 4 regions of Costa Rica over a period of 18 years. Long-term directional shifts in bird communities were evident in intensive- and diversified-agricultural habitats, but were strongest in intensive-agricultural habitats, where the number of endemic and International Union for Conservation of Nature (IUCN) Red List species fell over time. All major guilds, including those involved in pest control, pollination and seed dispersal, were affected. Bird communities in intensive-agricultural habitats proved more susceptible to changes in climate, with hotter and drier periods associated with greater changes in community composition in these settings. These findings demonstrate that diversified agriculture can help to alleviate the long-term loss of biodiversity outside natural protected areas. FULL TEXT
.
Silva et al., 2018
Silva, V., Montanarella, L., Jones, A., Fernandez-Ugalde, O., Mol, H. G. J., Ritsema, C. J., & Geissen, V.; “Distribution of glyphosate and aminomethylphosphonic acid (AMPA) in agricultural topsoils of the European Union;” Science of The Total Environment, 2018, 621, 1352-1359; DOI: 10.1016/j.scitotenv.2017.10.093.
ABSTRACT:
Approval for glyphosate-based herbicides in the European Union (EU) is under intense debate due to concern about their effects on the environment and human health. The occurrence of glyphosate residues in European water bodies is rather well documented whereas only few, fragmented and outdated information is available for European soils. We provide the first large-scale assessment of distribution (occurrence and concentrations) of glyphosate and its main metabolite aminomethylphosphonic acid (AMPA) in EU agricultural topsoils, and estimate their potential spreading by wind and water erosion. Glyphosate and/or AMPA were present in 45% of the topsoils collected, originating from eleven countries and six crop systems, with a maximum concentration of 2mgkg(-1). Several glyphosate and AMPA hotspots were identified across the EU. Soil loss rates (obtained from recently derived European maps) were used to estimate the potential export of glyphosate and AMPA by wind and water erosion. The estimated exports, result of a conceptually simple model, clearly indicate that particulate transport can contribute to human and environmental exposure to herbicide residues. Residue threshold values in soils are urgently needed to define potential risks for soil health and off site effects related to export by wind and water erosion. FULL TEXT
Smith et al., 2020
Smith, Dylan B., Arce, Andres N., Ramos Rodrigues, Ana, Bischoff, Philipp H., Burris, Daisy, Ahmed, Farah, & Gill, Richard J.; “Insecticide exposure during brood or early-adult development reduces brain growth and impairs adult learning in bumblebees;” Proceedings of the Royal Society B: Biological Sciences, 2020, 287(1922); DOI: 10.1098/rspb.2019.2442.
ABSTRACT:
For social bees, an understudied step in evaluating pesticide risk is how contaminated food entering colonies affects residing offspring development and maturation. For instance, neurotoxic insecticide compounds in food could affect central nervous system development predisposing individuals to become poorer task performers later-in-life. Studying bumblebee colonies provisioned with neonicotinoid spiked nectar substitute, we measured brain volume and learning behaviour of 3 or 12-day old adults that had experienced in-hive exposure during brood and/or early-stage adult development. Micro-computed tomography scanning and segmentation of multiple brain neuropils showed exposure during either of the developmental stages caused reduced mushroom body calycal growth relative to unexposed workers. Associated with this was a lower probability of responding to a sucrose reward and lower learning performance in an olfactory conditioning test. While calycal volume of control workers positively correlated with learning score, this relationship was absent for exposed workers indicating neuropil functional impairment. Comparison of 3- and 12-day adults exposed during brood development showed a similar degree of reduced calycal volume and impaired behaviour highlighting lasting and irrecoverable effects from exposure despite no adult exposure. Our findings help explain how the onset of pesticide exposure to whole colonies can lead to lag-effects on growth and resultant dysfunction. FULL TEXT
Dimitrov et al., 2006
Dimitrov, B. D., Gadeva, P. G., Benova, D. K., & Bineva, M. V.; “Comparative genotoxicity of the herbicides Roundup, Stomp and Reglone in plant and mammalian test systems;” Mutagenesis, 2006, 21(6), 375-382; DOI: 10.1093/mutage/gel044.
ABSTRACT:
The genotoxicities of the herbicides Roundup (glyphosate), Stomp (pendimethaline) and Reglone (diquat), were compared in plant (Crepis capillaris L.) and mouse bone marrow test systems using chromosomal aberrations and micronuclei. Roundup did not induce chromosomal aberrations or micronuclei in either test system. Reglone also did not induce chromosomal aberrations in either test system; however, it increased micronucleus frequency in both plant cells and mouse bone marrow polychromatic erythrocytes (PCEs). The responses of the two test systems to Stomp were quite different. Stomp did not induce chromosomal aberrations in the plant cells, but increased their incidence in mouse cells; Stomp increased the frequency of micronuclei in both test systems. The induction of micronuclei in plant cells may have been due to the spindle-destroying effect of the herbicide, since all concentrations of Stomp produced C-mitoses. The increased chromosomal aberration frequency in mouse bone marrow cells observed at later sampling times after administration of Stomp into animals suggests that the induction of aberrations may be due to biosynthesis of genotoxic metabolites. This conclusion was supported by the coincidence between the frequencies of chromosomal aberrations and of micronucleated PCEs in mouse cells. These data indicate that plant and animal assays are differentially responsive to some pesticides, and these differences may be due to metabolism and their responses to mitotic spindle disruption. FULL TEXT
Sviridov et al., 2015
Sviridov, A. V., Shushkova, T. V., Ermakova, I. T., Ivanova, E. V., Epiktetov, D. O., & Leont’evskii, A. A.; “[Microbial degradation of glyphosate herbicides (review)];” Prikl Biokhim Mikrobiol, 2015, 51(2), 183-190; DOI: 10.7868/s0555109915020221.
ABSTRACT:
This review analyzes the issues associated with biodegradation of glyphosate (N-(phosphonomethyl)glycine), one of the most widespread herbicides. Glyphosate can accumulate in natural environments and can be toxic not only for plants but also for animals and bacteria. Microbial transformation and mineralization of glyphosate, as the only means of its rapid degradation, are discussed in detail. The different pathways of glyphosate catabolism employed by the known destructing bacteria representing different taxonomic groups are described. The potential existence of alternative glyphosate degradation pathways, apart from those mediated by C-P lyase and glyphosate oxidoreductase, is considered. Since the problem of purifying glyphosate-contaminated soils and water bodies is a topical issue, the possibilities of applying glyphosate-degrading bacteria for their bioremediation are discussed. FULL TEXT
Boobis et al., 2008
Boobis, A. R., Ossendorp, B. C., Banasiak, U., Hamey, P. Y., Sebestyen, I., & Moretto, A.; “Cumulative risk assessment of pesticide residues in food;” Toxicology Letters, 2008, 180(2), 137-150; DOI: 10.1016/j.toxlet.2008.06.004.
ABSTRACT:
There is increasing need to address the potential risks of combined exposures to multiple residues from pesticides in the diet. The available evidence suggests that the main concern is from dose addition of those compounds that act by the same mode of action. The possibility of synergy needs to be addressed on a case-by-case basis, where there is a biologically plausible hypothesis that it may occur at the levels of residues occurring in the diet. Cumulative risk assessment is a resource-intense activity and hence a tiered approach to both toxicological evaluation and intake estimation is recommended, and the European Food Safety Authority (EFSA) has recently published such a proposal. Where assessments have already been undertaken by some other authority, full advantage should be taken of these, subject of course to considerations of quality and relevance. Inclusion of compounds in a cumulative assessment group (CAG) should be based on defined criteria, which allow for refinement in a tiered approach. These criteria should include chemical structure, mechanism of pesticidal action, target organ and toxic mode of action. A number of methods are available for cumulating toxicity. These are all inter-related, but some are mathematically more complex than others. The most useful methods, in increasing levels of complexity and refinement, are the hazard index, the reference point index, the Relative Potency Factor method and physiologically based toxicokinetic modelling, although this last method would only be considered should a highly refined assessment be necessary. Four possible exposure scenarios are of relevance for cumulative risk assessment, acute and chronic exposure in the context of maximum residue level (MRL)-setting, and in relation to exposures from the actual use patterns, respectively. Each can be addressed either deterministically or probabilistically. Strategies for dealing with residues below the limit of detection, limit of quantification or limit of reporting need to be agreed. A number of probabilistic models are available, but some of there are geographically constrained due to the underlying datasets used in their construction. Guidance on probabilistic modelling needs to be finalised. Cumulative risk assessments have been performed in a number of countries, on organophosphate insecticides alone (USA) or together with carbamates (UK, DK, NL), triazines, chloroacetanilides, carbamates alone (USA), and all pesticides (DE). All identifiable assumptions and uncertainties should be tabulated and evaluated, at least qualitatively. Those likely to have a major impact on the outcome of the assessment should be examined quantitatively. In cumulative risk assessment, it is necessary, as in other risk assessments, for risk managers to consider what level of risk would be considered “acceptable”, for example what percentile of the population should be below the reference value. Criteria for prioritising CAGs for cumulative risk assessment include frequency of detection in monitoring programmes, high usage, high exposure relative to the reference value, large number of compounds (e.g. five or more) in a group. FULL TEXT
Curl et al., 2020
Curl, C. L., Spivak, M., Phinney, R., & Montrose, L.; “Synthetic Pesticides and Health in Vulnerable Populations: Agricultural Workers;” Current Environmental Health Reports, 2020, 7(1), 13-29; DOI: 10.1007/s40572-020-00266-5.
ABSTRACT:
PURPOSE OF REVIEW: This review aims to summarize epidemiological literature published between May 15, 2018, and May 14, 2019, that examines the relationship between exposure to synthetic pesticides and health of agricultural workers.
RECENT FINDINGS: Current research suggests that exposure to synthetic pesticides may be associated with adverse health outcomes. Agricultural workers represent a potentially vulnerable population, due to a combination of unique social and cultural risk factors as well as exposure to hazards inherent in agricultural work. Pesticide exposure among agricultural workers has been linked to certain cancers, DNA damage, oxidative stress, neurological disorders, and respiratory, metabolic, and thyroid effects.
SUMMARY: This review describes literature suggesting that agricultural workers exposed to synthetic pesticides are at an increased risk of certain cancers and neurological disorders. Recent research on respiratory effects is sparse, and more research is warranted regarding DNA damage, oxidative stress, metabolic outcomes, and thyroid effects. FULL TEXT
Thacker, 2020
Thacker, Paul D, “Transparency and Conflicts in Science: History of Influence, Scandal, and Denial,” Chapter 1 in Integrity, Transparency and Corruption in Healthcare & Research on Health, 2020,Volume I (pp. 3-26), Springer Nature Singapore.
ABSTRACT:
Corporate finances influence many areas of science, originating with tobacco companies which hired public relations firms to protect their profits from research on the harms of smoking. Despite a large body of studies finding that money biases research, scientists and academic organizations fail to embrace the peer-reviewed research on corporate influence. In many instances, they reject the science and try to rationalize behavior, leading a cycle of scandal, followed by reform, followed by later scandal. Because corporate influence is so pervasive and often denied, policymakers must understand this history as well as the research on financial conflicts of interest to protect the public. FULL TEXT
Ait-Bali et al., 2020
Ait-Bali, Y., Ba-M’hamed, S., Gambarotta, G., Sassoe-Pognetto, M., Giustetto, M., & Bennis, M.; “Pre- and postnatal exposure to glyphosate-based herbicide causes behavioral and cognitive impairments in adult mice: evidence of cortical ad hippocampal dysfunction;” Archives of Toxicology, 2020; DOI: 10.1007/s00204-020-02677-7.
ABSTRACT:
Glyphosate-based herbicides (GBH) are the most widely used pesticides worldwide. Despite considerable progress in describing the neurotoxic potential of GBH, the harmful effects on brain cytoarchitecture and behavior are still unclear. Here, we addressed the developmental impact of GBH by exposing female mice to 250 or 500 mg/kg doses of GBH during both pregnancy and lactation and then examined the downstream effects at the behavioral, neurochemical and molecular levels. We show that pre- and neonatal exposure to GBH impairs fertility and reproduction parameters as well as maternal behavior of exposed mothers. In offspring, GBH was responsible for a global delay in innate reflexes and a deficit in motor development. At the adult age, exposed animals showed a decrease of locomotor activity, sociability, learning and short- and long-term memory associated with alterations of cholinergic and dopaminergic systems. Furthermore, GBH-activated microglia and astrocytes, sign of neuroinflammation event in the medial prefrontal cortex and hippocampus. At the molecular level, a down-regulation of brain-derived neurotrophic factor (BDNF) expression and an up-regulation of tyrosine-related kinase receptor (TrkB), NR1 subunit of NMDA receptor as well as tumor necrosis factor alpha (TNFalpha) were found in the brain of GBH-exposed mice. The present work demonstrates that GBH induces numerous behavioral and cognitive abnormalities closely associated with significant histological, neurochemical and molecular impairments. It also raises fundamental concerns about the ability of current safety testing to assess risks of pesticide exposure during developmental periods of central nervous system. FULL TEXT