skip to Main Content

Project Bibliography

Bibliographies Grouped by Tag:
24 D | Adjuvants | Agricultural Health Study | Agrochemicals | AMPA | Analytical Methods | Atrazine | Autism | Biodiversity | Biomarkers | Biomonitoring | Birth Cohort Studies | Birth Defects | Birthweight | Cancer | Children | Chlorpyrifos | Climate Change | Communicating Science | Crop Science | Cumulative Toxicity | Cypermethrin | Cytotoxicity | DDT | Desiccation | Developmental Impacts | Diazinon | Dicamba | Dicamba Part I | Dicamba Part II | Dicamba Part III | Dicamba Watch | Diet | Dietary Risk | Diversified Weed Management/Integrated Pest Management (IPM) | DNA Damage | Economics | Endocrine Disruptors | Endosulfan | Environmental Health | Environmental Impacts | Environmental Racism | EPA Regulation | Epidemiological Studies | Epigenetic Impacts | Ethics and Environmental Justice | ethnicity | Exposure | Exposure at School and Public Spaces | Exposure in Pets | Female Reproductive Impacts | Fertility | Food Systems | Full Text Available | Fungicides | Gastrointestinal Impacts | GBH | Gender | Genetically Modified Crops | Genotoxicity | Gestational Length | Glufosinate | Glyphosate | Heartland Region | Herbicide Exposure | Herbicide Industry Labels and User Guides | Herbicide Use | Herbicides | HHRA Publication | Imidacloprid | Insecticides | Invertebrate Toxicity | Kidney Disease | Liver Damage | Lowdown on Roundup Part I | Lowdown on Roundup Part II | Lowdown on Roundup Part III | Lowdown on Roundup Part IV | Male Reproductive Impacts | Maternal Gut Microbiome | Meta-Analysis or Review Paper | Metolachlor | Microbiome | Miscarriage Rate | Multi-omics | National Cancer Institute | Neonicotinoids | Neurodevelopmental Toxicity | Nitric Oxide | Obesity | Occupational Exposure | Organic | Organic vs Conventional | Organochlorines | Organophosphates | Other Health Risks | Oxamyl | Oxidative Stress | Paraquat | Parkinson's Disease | Persistent Organic Pollutants | Pesticide Drift | Pesticide Effectiveness | Pesticide Exposure | Pesticide Legislation | Pesticide Registration | Pesticide Residues | Pesticide Resistance | Pesticide Toxicity | Pesticide Use | Policy and Politics | Pollinators | Pregestational Obesity | Pregnancy | prenatal | Public Health | Pyrethroids | Regenerative Agriculture | Remediation | Reproductive Impacts | Resistant Weeds | Risk Assessment | Roundup | Rural Health | Science Team Publication | Seasonal | Soil Health | Sperm Quality | Surfactants | Toxicity | Traizoles | Trends Analysis | Weed Management Systems
Combine bibliography tags from the above list:

EPA, 2000

EPA, “Choosing a Percentile of Acute Dietary Exposure as a Threshold of Regulatory Concern,” Office of Pesticide Programs, 2000, Available at: https://www.epa.gov/sites/default/files/2015-07/documents/trac2b054_0.pdf.

 


Kutz et al., 1992

Kutz, F. W., Cook, B. T., Carter-Pokras, O. D., Brody, D., & Murphy, R. S.; “Selected pesticide residues and metabolites in urine from a survey of the U.S. general population;” Journal of Toxicology and Environmental Health, 1992, 37(2), 277-291; DOI: 10.1080/15287399209531670.

ABSTRACT:

Residues of toxic chemicals in human tissues and fluids can be important indicators of exposure. Urine collected from a subsample of the second National Health and Nutrition Examination Survey was analyzed for organochlorine, organophosphorus, and chlorophenoxy pesticides or their metabolites. Urine concentration was also measured. The most frequently occurring residue in urine was pentachlorophenol (PCP), found in quantifiable concentrations in 71.6% of the general population with an estimated geometric mean level of 6.3 ng/ml. Percent quantifiable levels of PCP were found to be highest among males. Quantifiable concentrations of 3,5,6-trichloro-2-pyridinol (5.8%), 2,4,5-trichlorophenol (3.4%), para-nitrophenol (2.4%), dicamba (1.4%), malathion dicarboxylic acid (0.5%), malathion alpha-monocarboxylic acid (1.1%), and 2,4-D (0.3%) were found, but at much lower frequencies. No quantifiable levels of 2,4,5-T or silvex were found. Preliminary analyses showed an apparent relationship between residue concentration and two measures of urine concentration (osmolality and creatinine). A large segment of the general population of the United States experienced exposure to certain pesticides, including some considered biodegradable, during the years 1976-1980. FULL TEXT


EPA, 2015b

Environmental Protection Agency, “Evaluation of the Carcinogenic Potential of Glyphosate Case No. 1071-83-6 .” Office of Chemical Safety and Pollution Prevention, October 1, 2015.

ABSTRACT:

On September 16, 2015, the Cancer Assessment Review Committee (CARC) of the Health
Effects Division, of the Office of Pesticide Programs evaluated the carcinogenic potential of
Glyphosate in accordance with the EPA ‘s Final Guidelines for Carcinogen Risk Assessment
(March, 2005). Attached please find the final Cancer Assessment Document.

FULL TEXT


Benbrook, 2022a

Benbrook, Charles; “Tracking pesticide residues and risk levels in individual samples—insights and applications;” Environmental Sciences Europe, 2022, 34(1); DOI: 10.1186/s12302-022-00636-w.

ABSTRACT:

BACKGROUND: A method is now available to quantify the number of pesticide residues and relative pesticide dietary risks in individual servings of food. The Dietary Risk Index (DRI) system combines the results of United States and United Kingdom pesticide residue testing programs with data on food serving sizes and each pesticide’s chronic Reference Dose or Acceptable Daily Intake. Chronic DRI values are a ratio: the amount of residue in a serving of food relative to the maximum amount allowed by regulators.

RESULTS: The DRI system generates individual sample tables reporting the number of residues detected and individual pesticide and aggregate-pesticide DRI values in specific, individual samples of food. It is the first such system to do so worldwide. Output tables produce accurate estimates of real-world dietary risks based on current toxicology data and exposure benchmarks set by regulators. System outputs allow assessment of the distribution of pesticide dietary risks across foods and pesticides and demonstrate that dietary risk levels are highly skewed. A large number of samples pose moderate, low, or very-low risks, and relatively few samples pose high or very-high risks.

CONCLUSIONS: The DRI system provides the food industry, regulators and analysts with a simple, accessible online tool to assess pesticide dietary-risk levels by food, by pesticide, as a function of country of origin, and on food grown on conventional versus organic farms. DRI system output tables show that the number of residues in a sample of food is a consistently poor indicator of dietary risk levels. By identifying the relatively small number of high-risk samples, efforts to mitigate pesticide dietary risks can be targeted where the most worrisome risks are.

FULL TEXT

 


Bienvenu et al., 2021

Bienvenu, J. F., Belanger, P., Gaudreau, E., Provencher, G., & Fleury, N.; “Determination of glyphosate, glufosinate and their major metabolites in urine by the UPLC-MS/MS method applicable to biomonitoring and epidemiological studies;” Analytical and Bioanalytical Chemistry, 2021; DOI: 10.1007/s00216-021-03194-x.

ABSTRACT:

The preoccupation concerning glyphosate (GLYP) has rapidly grown over recent years, and the availability of genetically modified crops that are resistant to GLYP or glufosinate (GLUF) has increased the use of these herbicides. The debate surrounding the carcinogenicity of GLYP has raised interest and the desire to gain information on the level of exposure of the population. GLYP and aminomethylphosphonic acid (AMPA) are commonly simultaneously analysed. GLUF is sometimes also monitored, but its major metabolite, 3-[hydroxy(methyl)phosphinoyl]propionic acid (3MPPA), is rarely present in the method. Using a pentafluorobenzyl derivative to extract the analytes from human urine, we present a method that contains four important analytes to monitor human exposure to GLYP and GLUF. The use of the flash freeze technique speeds up the extraction process and requires less organic solvent than conventional liquid-liquid extraction. The limits of detection in the low mug/L range enable the use of this method for epidemiological studies. The results obtained for 35 volunteers from the Quebec City area are presented with the results from multiple interlaboratory comparisons (G-EQUAS, HBM4EU and OSEQAS). This methodology is currently being used in the Maternal-Infant Research on Environmental Chemicals (MIREC-ENDO) study and in the Canadian Health Measures Survey (CHMS).

FULL TEXT


Freisthler et al., 2022

Freisthler, Marlaina S., Robbins, C. Rebecca, Benbrook, Charles M., Young, Heather A., Haas, David M., Winchester, Paul D., & Perry, Melissa J.; “Association between increasing agricultural use of 2,4-D and population biomarkers of exposure: findings from the National Health and Nutrition Examination Survey, 2001–2014;” Environmental Health, 2022, 21(1); DOI: 10.1186/s12940-021-00815-x.

ABSTRACT:

BACKGROUND: 2,4-Dichlorophenoxyacetic acid (2,4-D) is one of the most extensively used herbicides in the United States. In 2012, 2,4-D was the most widely used herbicide in non-agricultural settings and the fifth most heavily applied pesticide in the US agricultural sector. The objective of this study was to examine trends in 2,4-D urinary biomarker concentrations to determine whether increases in 2,4-D application in agriculture are associated with increases in biomonitoring levels of urine 2,4-D.

METHODS: Data from the National Health and Nutrition Examination Survey (NHANES) with available urine 2,4-D biomarker measurements from survey cycles between 2001 and 2014 were utilized. Urine 2,4-D values were dichotomized using the highest limit of detection (LOD) across all cycles (0.40 mug/L or 0.4 ppb). Agricultural use of 2,4-D was estimated by compiling publicly available federal and private pesticide application data. Logistic regression models adjusted for confounders were fitted to evaluate the association between agricultural use of 2,4-D and urine 2,4-D level above the dichotomization threshold.

RESULTS: Of the 14,395 participants included in the study, 4681 (32.5%) had urine 2,4-D levels above the dichotomization threshold. The frequency of participants with high 2,4-D levels increased significantly (p < .0001), from a low of 17.1% in 2001-2002 to a high of 39.6% in 2011-2012. The adjusted odds of high urinary 2,4-D concentrations associated with 2,4-D agricultural use (per ten million pounds applied) was 2.268 (95% CI: 1.709, 3.009). Children ages 6-11 years (n = 2288) had 2.1 times higher odds of having high 2,4-D urinary concentrations compared to participants aged 20-59 years. Women of childbearing age (age 20-44 years) (n = 2172) had 1.85 times higher odds than men of the same age.

CONCLUSIONS: Agricultural use of 2,4-D has increased substantially from a low point in 2002 and it is predicted to increase further in the coming decade. Because increasing use is likely to increase population level exposures, the associations seen here between 2,4-D crop application and biomonitoring levels require focused biomonitoring and epidemiological evaluation to determine the extent to which rising use and exposures cause adverse health outcomes among vulnerable populations (particularly children and women of childbearing age) and highly exposed individuals (farmers, other herbicide applicators, and their families).

FULL TEXT


Hood et al., 2022

Hood, R. B., Liang, D., Chiu, Y. H., Sandoval-Insausti, H., Chavarro, J. E., Jones, D., Hauser, R., & Gaskins, A. J.; “Pesticide residue intake from fruits and vegetables and alterations in the serum metabolome of women undergoing infertility treatment;” Environment International, 2022, 160, 107061; DOI: 10.1016/j.envint.2021.107061.

ABSTACT:

BACKGROUND: Pesticide exposure is linked to a myriad of negative health effects; however, the mechanisms underlying these associations are less clear. We utilized metabolomics to describe the alterations in the serum metabolome associated with high and low pesticide residue intake from fruits and vegetables (FVs), the most common route of exposure in humans.

METHODS: This analysis included 171 women undergoing in vitro fertilization who completed a validated food frequency questionnaire and provided a serum sample during controlled ovarian stimulation (2007–2015). FVs were categorized as high or low-to-moderate pesticide residue using a validated method based on pesticide surveillance data from the USDA. We conducted untargeted metabolic profiling using liquid chromatography with high-resolution mass spectrometry and two chromatography columns. We used multivariable generalized linear models to identified metabolic features (p < 0.005) associated with high and low-to-moderate pesticide residue FV intake, followed by enriched pathway analysis.

RESULTS: We identified 50 and 109 significant features associated with high pesticide residue FV intake in the C18 negative and HILIC positive columns, respectively. Additionally, we identified 90 and 62 significant features associated with low-to-moderate pesticide residue FV intake in the two columns, respectively. Four metabolomic pathways were associated with intake of high pesticide residue FVs including those involved in energy, vitamin, and enzyme metabolism. 12 pathways were associated with intake of low-to-moderate pesticide residue FVs including cellular receptor, energy, intercellular signaling, lipid, vitamin, and xenobiotic metabolism. One energy pathway was associated with both high and low-to-moderate pesticide residue FVs.

CONCLUSIONS: We identified limited overlap in the pathways associated with intake of high and low-to-moderate pesticide residue FVs, which supports findings of disparate health effects associated with these two exposures. The identified pathways suggest there is a balance between the dietary antioxidant intake associated with FVs intake and heightened oxidative stress as a result of dietary pesticide exposure.

FULL TEXT


Agrochemicals, Environmental Racism, and Environmental Justice in U.S. History

Porter, M. Jayson; Agrochemicals, Environmental Racism, and Environmental Justice in U.S. History. Northwestern University, The Organic Center (2022).

INTRODUCTION:

In theory, pesticides should have the toxicity to deter pests without harming plants or people. However, a closer look at pesticide history in the United States reveals an enduring legacy of environmental racism against communities of color and their collective action for environmental justice. Humans have harnessed the toxicity of chemicals to kill agricultural insects for millennia. However, the rapid proliferation of modern agrochemicals between 1870-1914 increased how much agriculture itself could hurt places and people. The burden of protecting people and places has always fallen on communities rather than governments and institutions.

FULL TEXT REPORT


Buckley et al., 2022

Jessie P. Buckley, Jordan R. Kuiper, Deborah H. Bennett, Emily S. Barrett, Tracy Bastain, Carrie V. Breton, Sridhar Chinthakindi, Anne L. Dunlop, Shohreh F. Farzan, Julie B. Herbstman, Margaret R. Karagas, Carmen J. Marsit, John D. Meeker, Rachel Morello-Frosch, Thomas G. O’Connor, Megan E. Romano, Susan Schantz, Rebecca J. Schmidt, Deborah J. Watkins, Hongkai Zhu, Edo D. Pellizzari, Kurunthachalam Kannan, and Tracey J. Woodruff. “Exposure to Contemporary and Emerging Chemicals in Commerce among Pregnant Women in the United States: The Environmental influences on Child Health Outcome (ECHO) Program.” Environmental Science & Technology (2022) 56 (10), 6560-6573 DOI: 10.1021/acs.est.1c08942.
ABSTRACT:
Prenatal chemical exposures can influence maternal and child health; however, few industrial chemicals are routinely biomonitored. We assessed an extensive panel of contemporary and emerging chemicals in 171 pregnant women across the United States (U.S.) and Puerto Rico in the Environmental influences on Child Health Outcomes (ECHO) Program. We simultaneously measured urinary concentrations of 89 analytes (103 total chemicals representing 73 parent compounds) in nine chemical groups: bactericides, benzophenones, bisphenols, fungicides and herbicides, insecticides, organophosphate esters (OPEs), parabens, phthalates/alternative plasticizers, and polycyclic aromatic hydrocarbons (PAHs). We estimated associations of creatinine-adjusted concentrations with sociodemographic and specimen characteristics. Among our diverse prenatal population (60% non-Hispanic Black or Hispanic), we detected 73 of 89 analytes in ≥1 participant and 36 in >50% of participants. Five analytes not currently included in the U.S. biomonitoring were detected in ≥90% of samples: benzophenone-1, thiamethoxam, mono-2-(propyl-6-carboxy-hexyl) phthalate, monocarboxy isooctyl phthalate, and monohydroxy-iso-decyl phthalate. Many analyte concentrations were higher among women of Hispanic ethnicity compared to those of non-Hispanic White women. Concentrations of certain chemicals decreased with the calendar year, whereas concentrations of their replacements increased. Our largest study to date identified widespread exposures to prevalent and understudied chemicals in a diverse sample of pregnant women in the U.S.

FULL TEXT


Rezende et al., 2021

Rezende, E.C.N., Carneiro, F.M., de Moraes, J.B. et al. “Trends in science on glyphosate toxicity: a scientometric study.” Environmental Science and Pollution Research 28, 56432–56448 (2021). DOI: 10.1007/s11356-021-14556-4

ABSTRACT:

As part of the most used herbicides, glyphosate is the most successful ingredient of agrochemical companies. The main objective of this study was to demonstrate research trends related to the glyphosate toxicity and its main effects on human and environmental health. For this purpose, 443 articles published, from 1995 to 2020, on the platform Web of Science™ Thomson Reuters were selected. The main toxicity results related in literature are genotoxicity, cytotoxicity, and endocrine disruption. The environmental effects come mostly from the contamination of groundwater and soils. Several studies have concluded that herbicide concentrations right below the official safety limits induced toxic effects. The results presented a highlighted harmful effect of glyphosate on both human and environmental health. It has been observed that countries where publish the most about the glyphosate toxicity are great investors in large-scale agriculture. It is important to ponder that these countries are in a route of ecosystem exploitation that includes not only fauna and flora, but also human beings. Unfortunately, science does not provide concise data for these pesticide disapproval in the global consumer market. It is necessary to search sustainable global interest alternatives to increase agriculture production based on peoples’ food sovereignty. FULL TEXT


Back To Top
Search