skip to Main Content

Bibliography Tag: weed management systems

LaCanne and Lundgren, 2018

LaCanne, C. E., & Lundgren, J. G.; “Regenerative agriculture: merging farming and natural resource conservation profitably;” PeerJ, 2018, 6, e4428; DOI: 10.7717/peerj.4428.

ABSTRACT:

Most cropland in the United States is characterized by large monocultures, whose productivity is maintained through a strong reliance on costly tillage, external fertilizers, and pesticides (Schipanski et al., 2016). Despite this, farmers have developed a regenerative model of farm production that promotes soil health and biodiversity, while producing nutrient-dense farm products profitably. Little work has focused on the relative costs and benefits of novel regenerative farming operations, which necessitates studying in situ, farmer-defined best management practices. Here, we evaluate the relative effects of regenerative and conventional corn production systems on pest management services, soil conservation, and farmer profitability and productivity throughout the Northern Plains of the United States. Regenerative farming systems provided greater ecosystem services and profitability for farmers than an input-intensive model of corn production. Pests were 10-fold more abundant in insecticide-treated corn fields than on insecticide-free regenerative farms, indicating that farmers who proactively design pest-resilient food systems outperform farmers that react to pests chemically. Regenerative fields had 29% lower grain production but 78% higher profits over traditional corn production systems. Profit was positively correlated with the particulate organic matter of the soil, not yield. These results provide the basis for dialogue on ecologically based farming systems that could be used to simultaneously produce food while conserving our natural resource base: two factors that are pitted against one another in simplified food production systems. To attain this requires a systems-level shift on the farm; simply applying individual regenerative practices within the current production model will not likely produce the documented results. FULL TEXT

Mariyono, 2008

Mariyono, Joko; “Direct and indirect impacts of integrated pest management on pesticide use: a case of rice agriculture in Java, Indonesia;” Pest Management Science, 2008, 64(10), 1069-1073; DOI:10.1002/ps.1602.

ABSTRACT:

BACKGROUND: Integrated pest management (IPM) technology has been disseminated since 1989 in Indonesia to cut down pesticide use, but the adoption and diffusion of the technology are still debated. This study aims to estimate the models of demand for pesticides and to analyse the impact of IPM technology on pesticide use. Aggregate cross-section time series data from 1990-1998 are used.

RESULTS: The results show that IPM technology reduces the use of pesticides by improving the process of rice production, such that pesticides are more efficiently used. In this case, the IPM technology is not a pest control technique.

CONCLUSION There is an indication that IPM technology has been adopted by farmers. This is evidence that the IPM programme in Indonesia was successful in this area. Copyright ? 2008 Society of Chemical Industry

FULL TEXT

Bohnenblust et al., 2016

Bohnenblust, E. W., Vaudo, A. D., Egan, J. F., Mortensen, D. A., & Tooker, J. F.; “Effects of the herbicide dicamba on nontarget plants and pollinator visitation;” Environmental Toxicology and Chemistry, 2016, 35(1), 144-151; DOI: 10.1002/etc.3169.

ABSTRACT:

Nearly 80% of all pesticides applied to row crops are herbicides, and these applications pose potentially significant ecotoxicological risks to nontarget plants and associated pollinators. In response to the widespread occurrence of weed species resistant to glyphosate, biotechnology companies have developed crops resistant to the synthetic-auxin herbicides dicamba and 2,4-dichlorophenoxyacetic acid (2,4-D); and once commercialized, adoption of these crops is likely to change herbicide-use patterns. Despite current limited use, dicamba and 2,4-D are often responsible for injury to nontarget plants; but effects of these herbicides on insect communities are poorly understood. To understand the influence of dicamba on pollinators, the authors applied several sublethal, drift-level rates of dicamba to alfalfa (Medicago sativa L.) and Eupatorium perfoliatum L. and evaluated plant flowering and floral visitation by pollinators. The authors found that dicamba doses simulating particle drift (≈1% of the field application rate) delayed onset of flowering and reduced the number of flowers of each plant species; however, plants that did flower produced similar-quality pollen in terms of protein concentrations. Further, plants affected by particle drift rates were visited less often by pollinators. Because plants exposed to sublethal levels of dicamba may produce fewer floral resources and be less frequently visited by pollinators, use of dicamba or other synthetic-auxin herbicides with widespread planting of herbicide-resistant crops will need to be carefully stewarded to prevent potential disturbances of plant and beneficial insect communities in agricultural landscapes. FULL TEXT

Sharma and Peshin, 2016

Sharma, Rakesh, & Peshin, Rajinder; “Impact of integrated pest management of vegetables on pesticide use in subtropical Jammu, India;” Crop Protection, 2016, 84, 105-112; DOI: 10.1016/j.cropro.2016.02.014.

ABSTRACT:

In a study at the subtropical vegetable-growing areas of the state of Jammu and Kashmir (J&K), a quasi-experimental research design with a non-equivalent control group was employed to examine the impact of an integrated pest management (IPM) program implemented from 2008 to 2010 on the adoption of non-chemical pest management practices, pesticide use by weight (active ingredient [a.i.]), pesticide use frequency, field use environment impact (FEIQ) and safe handling and application of pesticides by IPM-trained farmers. There was no significant change in adoption of non-chemical practices, other than pheromone traps used by okra (Abelmoschus esculentus (L.) Moench) growers. Growers reduced FEIQ by 17.9 per hectare from 2008 to 2010. Pesticide use (a.i.) did not decrease significantly, and frequency decreased significantly by 72.4% only in cauliflower (Brassica oleracea L. var. botrytis). The vegetable growers did not use protective equipment while handling and applying pesticides thus putting themselves at risk. Implementation of IPM thus needs to be reexamined to significantly reduce pesticide use by weight, treatment frequency and FEIQ.

Oseland et al., 2020

Oseland, E., Bish, M., Steckel, L., & Bradley, K.; “Identification of environmental factors that influence the likelihood of off-target movement of dicamba;” Pest Management Science, 2020, 76(9), 3282-3291; DOI: 10.1002/ps.5887.

ABSTRACT:

BACKGROUND: Commercialization of dicamba-resistant soybean and cotton and subsequent post-emergence applications of dicamba contributed to at least 1.4 and 0.5 million hectares of dicamba-injured soybean in the United States in 2017 and 2018, respectively. This research was initiated to identify environmental factors that contribute to off-target dicamba movement. A survey was conducted following the 2017 growing season to collect information from dicamba applications that remained on the target field and those where dicamba moved. Weather and environmental data surrounding applications were collected and used to identify factors that reduce the likelihood of off-target movement. Soil pH was one factor identified in the model, and field experiments were conducted in 2018 and 2019 to validate the model. Three commercially-available dicamba formulations and one formulation currently in development were applied to soil at five distinct pH values. Sensitive soybean was used as a bioassay plant to detect dicamba volatilization.

RESULTS: Wind speeds the day of and following application, nearest water source to the field, soybean production acreage in the county, and soil pH were identified as factors that influence the likelihood for off-target movement. In the field study, when dicamba was applied to pH-adjusted soil and placed under low tunnels for 72 h, dicamba volatility increased when soil pH decreased as the model predicted. Dicamba choline, which is not commercially available, had reduced volatility compared to other formulations tested.

CONCLUSION: Results of this study identified specific factors that contribute to successful and unsuccessful dicamba applications and should be considered prior to applications.

Riter et al., 2020


Riter, L. S., Sall, E. D., Pai, N., Beachum, C. E., & Orr, T. B.; “Quantifying Dicamba Volatility under Field Conditions: Part I, Methodology;” Journal of Agricultural and Food Chemistry, 2020, 68(8), 2277-2285; DOI: 10.1021/acs.jafc.9b06451.

ABSTRACT:

Quantitative assessment of the volatility of field applied herbicides requires orchestrated sampling logistics, robust analytical methods, and sophisticated modeling techniques. This manuscript describes a comprehensive system developed to measure dicamba volatility in an agricultural setting. Details about study design, sample collection, analytical chemistry, and flux modeling are described. A key component of the system is the interlaboratory validation of an analytical method for trace level detection (limit of quantitation of 1.0 ng/PUF) of dicamba in polyurethane foam (PUF) air samplers. Validation of field sampling and flux methodologies was conducted in a field trial that demonstrated agreement between predicted and directly measured dicamba air concentrations at a series of off-target locations. This validated system was applied to a field case study on two plots to demonstrate the utility of these methods under typical agricultural conditions. This case study resulted in a time-varying volatile flux profile, which showed that less than 0.2 +/- 0.05% of the applied dicamba was volatilized over the 3-day sampling period. FULL TEXT

Lamichhane, 2017

Lamichhane, Jay Ram; “Pesticide use and risk reduction in European farming systems with IPM: An introduction to the special issue;” Crop Protection, 2017, 97, 1-6; DOI: 10.1016/j.cropro.2017.01.017.

ABSTRACT:

Not available.

FULL TEXT

Cuyno, 2001

Cuyno, L.; “Economic analysis of environmental benefits of integrated pest management: a Philippine case study;” Agricultural Economics, 2001, 25(2-3), 227-233; DOI: 10.1111/j.1574-0862.2001.tb00203.x.

ABSTRACT:

Health and environmental concerns associated with pesticide use have motivated the development of integrated pest management (IPM) programs around the world. Little empirical work has been completed to estimate the value of the environmental benefits of IPM. This paper provides an approach to evaluate a broad set of such benefits for a vegetable program in the Philippines. Assessments were made of (1) IPM-induced reduction in environmental risks posed by pesticides in onion production in the Central Luzon and (2) willingness to pay to reduce those risks. The latter was based on a contingent valuation (CV) interview survey of 176 farmers. Risks to humans, birds, aquatic species, beneficial insects, and other animals were considered. IPM practices on onions reduced the use of specific pesticides from 25 to 65%, depending on the practice, and the projected adoption of IPM practices varied from 36 to 94%. Estimated economic benefits varied from 231 to 305 pesos per person per cropping season (40 pesos = 1 US$). The aggregate value of environmental benefits for the five villages where the IPM research program was centered was estimated at 150,000 US$ for the 4600 local residents. Assessment of environmental benefits can help in designing public policies and regulations, and in justifying support for publicly funded IPM programs.  FULL TEXT

Vencill et al., 2017

Vencill, William K., Nichols, Robert L., Webster, Theodore M., Soteres, John K., Mallory-Smith, Carol, Burgos, Nilda R., Johnson, William G., & McClelland, Marilyn R.; “Herbicide Resistance: Toward an Understanding of Resistance Development and the Impact of Herbicide-Resistant Crops;” Weed Science, 2017, 60(SP1), 2-30; DOI: 10.1614/ws-d-11-00206.1.

ABSTRACT:

Development of herbicide-resistant crops has resulted in significant changes to agronomic practices, one of which is the adoption of effective, simple, low-risk, crop-production systems with less dependency on tillage and lower energy requirements. Overall, the changes have had a positive environmental effect by reducing soil erosion, the fuel use for tillage, and the number of herbicides with groundwater advisories as well as a slight reduction in the overall environmental impact quotient of herbicide use. However, herbicides exert a high selection pressure on weed populations, and density and diversity of weed communities change over time in response to herbicides and other control practices imposed on them. Repeated and intensive use of herbicides with the same mechanisms of action (MOA; the mechanism in the plant that the herbicide detrimentally affects so that the plant succumbs to the herbicide; e.g., inhibition of an enzyme that is vital to plant growth or the inability of a plant to metabolize the herbicide before it has done damage) can rapidly select for shifts to tolerant, difficult-to-control weeds and the evolution of herbicide-resistant weeds, especially in the absence of the concurrent use of herbicides with different mechanisms of action or the use of mechanical or cultural practices or both. The purpose of this paper is to introduce the basic tenets of weed management, to define herbicide resistance and tolerance and how they affect crop production and are affected by management practices, and to present the environmental impacts of herbicide-resistant crops. This paper will summarize aspects of herbicide resistance in five different sections: (1) a description of basic weed science management practices and concepts, (2) definitions of resistance and tolerance in weed science, (3) environmental impacts of herbicide-resistant crops, (4) strategies for management of weed species shifts and herbicide-resistant weeds and adoption by the agricultural community, and (5) gene-flow potential from herbicide-resistant crops. FULL TEXT

Powles and Gaines, 2017

Powles, Stephen B., & Gaines, Todd A.; “Exploring the Potential for a Regulatory Change to Encourage Diversity in Herbicide Use;” Weed Science, 2017, 64(SP1), 649-654; DOI: 10.1614/ws-d-15-00070.1.

ABSTRACT:

An overreliance on herbicides in several important grain- and cotton-producing regions of the world has led to the widespread evolution of herbicide-resistant weed populations. Of particular concern are weed populations that exhibit simultaneous resistance to multiple herbicides (MHR). Too often, herbicides are the only tool used for weed control. We use the term herbicide-only syndrome (HOS) for this quasi-addiction to herbicides. Growers and their advisers focus on herbicide technology, unaware of or ignoring basic evolutionary principles or the necessary diversity provided by other methods of weed control. Diversity in weed control practices disrupts resistance evolution. Significant challenges exist to implementing diversity, including how to address information so that producers choose to alter existing behaviors (HOS) and take calculated risks by attempting new and more complex strategies. Herbicide resistance management in the long term will require creativity in many sectors, including roles for growers, industry, researchers, consultants, retailers, and regulators. There can be creativity in herbicide registration and regulation, as exemplified by the recent U.S. Environmental Protection Agency program that encourages herbicide registrants to register products in minor crops. We propose one idea for a regulatory incentive to enable herbicide registrants in jurisdictions such as the United States to receive an extended data exclusivity period in exchange for not developing one new herbicide in multiple crops used together in rotation, or for implementing stewardship practices such as robust mixtures or limitations on application frequency. This incentive would provide a mechanism to register herbicides in ways that help to ensure herbicide longevity. Approaches based only on market or financial incentives have contributed to the current situation of widespread MHR. Our suggestion for regulatory creativity is one way to provide both financial and biological benefits to the registering company and to the overall stakeholder community by incentivizing good resistance management. FULL TEXT

Back To Top
Search