skip to Main Content

Bibliography Tag: science team publication

Winchester et al., 2019

Winchester, Paul, Reiter, Jill L., Proctor, Cathy, Gerona, Roy R., Avery, Kayleigh D., Bromm, Jennifer R., Elsahy, Deena A, Hadley, Emily A., McGraw, Sara N., & Jones, Dana D., “Glyphosate in 1st Trimester of Pregnancy: Herbicides in the Womb,” 2019, Presented at the Pediatric Academic Societies (PAS) Meeting 2019, 4/24-5/1/2019, Baltimore, MD.

ABSTRACT:

BACKGROUND: Our previous study demonstrated that >90% of pregnant Midwest women had detectable glyphosate (GLY) in their urine. Most glyphosate exposure occurs through food & certain beverages but not through drinking water. Shorter pregnancies, rural address and caffeinated beverages were associated with higher GLY levels. The cohort was small and predominantly Caucasian. The current study was needed to confirm high rates of GLY detection in a racially more diverse high risk population.
OBJECTIVE: Will GLY be detected in a majority of pregnancies regardless of race/ethnicity? Are GLY levels associated with adverse pregnancy outcomes? Do GLY levels vary by season of collection in pregnancy?
DESIGN/METHODS: Prospective observation study. Discarded urine from 1st trimester pregnancies were collected prospectively from a high risk University obstetrical clinic. All pregnancy outcomes and neonatal outcomes were abstracted. Urines were frozen, shipped to analytical lab (USCF, RG) for analysis. Urine GLY (Glyphosate (N(phosphomethyl) glycine) was analyzed via liquid chromatography-tandem mass spectrometry (LC-MS/MS), limit of quantification of 0.1 ng/mL. GLY measured as independent variable was compared to multiple variables using bivariate analysis.
RESULTS: GLY was detected in 99% (186 of 187) pregnancies. Levels varied from 1.004 to 10.31ng/mL with geometric mean 3.264ng/mL. Mean maternal age was 30, with 69% white, 4.2% Hispanic, 12% Black, 3.7% Asian and one “other”. GLY levels did not differ significantly by racial/ethnic group. GLY levels were not significantly difference between preterm and term outcomes, multiple/singleton or between fetal loss and live births. GLY levels were higher with increasing gestation at enrollment with 4-8 weeks GLY 2.73 vs 9-13 weeks 3.51(p=.0098). Significantly higher GLY levels were found in April-July pregnancies vs other months(3.64 vs 3.07 p=.03). NICU admission rates were 85% for preterm and 35% for term. Birth defect rate was12% and 37% had intrauterine drug exposure or NAS. Preterm birth rate was 31%. CONCLUSIONS: Glyphosate was found in virtually all of these high risk pregnancies in the first trimester regardless of race/ethnicity, plurality, fetal loss or gestation at birth. GLY levels rose with increasing gestation in the first trimester suggesting that gestation at measurement impacts GLY levels. Dietary sources contribute to GLY but we did find April-July are associated with higher GLY levels than other months. The fetal epigenetic consequences of 1st trimester GLY exposure remains unknown. FULL TEXT

Hertz-Picciotto et al., 2018

Hertz-Picciotto, Irva, Sass, Jennifer B., Engel, Stephanie, Bennett, Deborah H., Bradman, Asa, Eskenazi, Brenda, Lanphear, Bruce, & Whyatt, Robin, “Organophosphate exposures during pregnancy and child neurodevelopment: Recommendations for essential policy reforms,” PLOS Medicine, 2018, 15(10). DOI: 10.1371/journal.pmed.1002671.

SUMMARY POINTS:

• Widespread use of organophosphate (OP) pesticides to control insects has resulted in ubiquitous human exposures.
• High exposures to OP pesticides are responsible for poisonings and deaths, particularly in developing countries.
• Compelling evidence indicates that prenatal exposure at low levels is putting children at risk for cognitive and behavioral deficits and for neurodevelopmental disorders.
To protect children worldwide, we recommend the following:
• Governments phase out chlorpyrifos and other OP pesticides, monitor watersheds and other sources of human exposures, promote use of integrated pest management (IPM) through incentives and training in agroecology, and implement mandatory surveillance of pesticide-related illness.
• Health professions implement curricula on the hazards from OP pesticides in nursing and medical schools and in continuing medical education courses and educate their patients and the public about these hazards.
• Agricultural entities accelerate the development of nontoxic approaches to pest control through IPM and ensure the safety of workers through training and provision of protective equipment when toxic chemicals are to be used. FULL TEXT

Benbrook, 2019

Benbrook, Charles M., “How did the US EPA and IARC reach diametrically opposed conclusions on the genotoxicity of glyphosate-based herbicides?,” Environmental Sciences Europe, 2019, 31(1), DOI:10.1186/s12302-018-0184-7.

ABSTRACT:

BACKGROUND: The US EPA considers glyphosate as “not likely to be carcinogenic to humans.” The International Agency for Research on Cancer (IARC) has classified glyphosate as “probably carcinogenic to humans (Group 2A).” EPA asserts that there is no convincing evidence that “glyphosate induces mutations in vivo via the oral route.” IARC concludes there is “strong evidence” that exposure to glyphosate is genotoxic through at least two mechanisms known to be associated with human carcinogens (DNA damage, oxidative stress). Why and how did EPA and IARC reach such different conclusions?

RESULTS: A total of 52 genotoxicity assays done by registrants were cited by the EPA in its 2016 evaluation of technical glyphosate, and another 52 assays appeared in the public literature. Of these, one regulatory assay (2%) and 35 published assays (67%) reported positive evidence of a genotoxic response. In the case of formulated, glyphosatebased herbicides (GBHs), 43 regulatory assays were cited by EPA, plus 65 assays published in peer-reviewed journals. Of these, none of the regulatory, and 49 published assays (75%) reported evidence of a genotoxic response following exposure to a GBH. IARC considered a total of 118 genotoxicity assays in six core tables on glyphosate technical, GBHs, and aminomethylphosphonic acid (AMPA), glyphosate’s primary metabolite. EPA’s analysis encompassed 51 of these 118 assays (43%). In addition, IARC analyzed another 81 assays exploring other possible genotoxic mechanisms (mostly related to sex hormones and oxidative stress), of which 62 (77%) reported positive results. IARC placed considerable weight on three positive GBH studies in exposed human populations, whereas EPA placed little or no weight on them.

CONCLUSIONS: EPA and IARC reached diametrically opposed conclusions on glyphosate genotoxicity for three primary reasons: (1) in the core tables compiled by EPA and IARC, the EPA relied mostly on registrant-commissioned, unpublished regulatory studies, 99% of which were negative, while IARC relied mostly on peer-reviewed studies of which 70% were positive (83 of 118); (2) EPA’s evaluation was largely based on data from studies on technical glyphosate, whereas IARC’s review placed heavy weight on the results of formulated GBH and AMPA assays; (3) EPA’s evaluation was focused on typical, general population dietary exposures assuming legal, food-crop uses, and did not take into account, nor address generally higher occupational exposures and risks. IARC’s assessment encompassed data from typical dietary, occupational, and elevated exposure scenarios. More research is needed on real-world exposures to the chemicals within formulated GBHs and the biological fate and consequences of such exposures. FULL TEXT

Benbrook, 2018

Benbrook, Charles, “Why Regulators Lost Track and Control of Pesticide Risks: Lessons From the Case of Glyphosate-Based Herbicides and Genetically Engineered-Crop Technology,” Current Environmental Health Reports, 5:3, 387-395, 2018, DOI:10.1007/s40572-018-0207-y.

ABSTRACT:

PURPOSE OF REVIEW: The approval of genetically engineered (GE) crops in the late 1990s triggered dramatic changes in corn, soybean, and cotton pest management systems, as well as complex, novel regulatory challenges. Lessons learned are reviewed and solutions described.

RECENT FINDINGS: Government-imposed resistance management provisions can work and adapt to changing circumstances, but within the private sector, pressures to gain and hold market share have thus far trumped the widely recognized need for resistance management. Risks arising from the use of formulated pesticides often exceed by a wide margin those in regulatory risk assessments based on data derived from studies on nearly 100% pure active ingredients.

SUMMARY: Innovative policy changes are needed in four problem areas: excessive faith in the accuracy of pre-market risk assessments and regulatory thresholds; post-approval monitoring of actual impacts; risk arising from formulated pesticides, rather than just pure active ingredient; challenges inherent in assessing and mitigating the combined impacts of all GE traits and associated pesticides on agroecosystems, as opposed to each trait or pesticide alone; and, tools to deal with failing pest management systems. FULL TEXT

Panzacchi et al., 2018

Panzacchi, S., Mandrioli, D., Manservisi, F., Bua, L., Falcioni, L., Spinaci, M., Galeati, G., Dinelli, G., Miglio, R., Mantovani, A., Lorenzetti, S., Hu, J., Chen, J., Perry, M. J., Landrigan, P. J., & Belpoggi, F. “The Ramazzini Institute 13-week study on glyphosate-based herbicides at human-equivalent dose in Sprague Dawley rats: study design and first in-life endpoints evaluation,” Environmental Health, 17(1), 52, 2018.  doi:10.1186/s12940-018-0393-y.

ABSTRACT:

BACKGROUND: Glyphosate-based herbicides (GBHs) are the most widely used pesticides worldwide, and glyphosate is the active ingredient of such herbicides, including the formulation known as Roundup. The massive and increasing use of GBHs results in not only the global burden of occupational exposures, but also increased exposure to the general population. The current pilot study represents the first phase of a long-term investigation of GBHs that we are conducting over the next 5 years. In this paper, we present the study design, the first evaluation of in vivo parameters and the determination of glyphosate and its major metabolite aminomethylphosphonic acid (AMPA) in urine.

METHODS: We exposed Sprague-Dawley (SD) rats orally via drinking water to a dose of glyphosate equivalent to the United States Acceptable Daily Intake (US ADI) of 1.75 mg/kg bw/day, defined as the chronic Reference Dose (cRfD) determined by the US EPA, starting from prenatal life, i.e. gestational day (GD) 6 of their mothers. One cohort was continuously dosed until sexual maturity (6-week cohort) and another cohort was continuously dosed until adulthood (13-week cohort). Here we present data on general toxicity and urinary concentrations of glyphosate and its major metabolite AMPA.

RESULTS: Survival, body weight, food and water consumption of the animals were not affected by the treatment with either glyphosate or Roundup. The concentration of both glyphosate and AMPA detected in the urine of SD rats treated with glyphosate were comparable to that observed in animals treated with Roundup, with an increase in relation to the duration of treatment. The majority of glyphosate was excreted unchanged. Urinary levels of the parent compound, glyphosate, were around 100-fold higher than the level of its metabolite, AMPA.

CONCLUSIONS: Glyphosate concentrations in urine showed that most part of the administered dose was excreted as unchanged parent compound upon glyphosate and Roundup exposure, with an increasing pattern of glyphosate excreted in urine in relation to the duration of treatment. The adjuvants and the other substances present in Roundup did not seem to exert a major effect on the absorption and excretion of glyphosate. Our results demonstrate that urinary glyphosate is a more relevant marker of exposure than AMPA in the rodent model. FULL TEXT

Landrigan and Belpoggi, 2018

Landrigan, P. J., and Belpoggi, F.,”The need for independent research on the health effects of glyphosate-based herbicides,” Environmental Health, 17(1), 51, 2018, doi:10.1186/s12940-018-0392-z.

ABSTRACT:

BACKGROUND: Glyphosate, formulated as Roundup, is the world’s most widely used herbicide. Glyphosate is used extensively on genetically modified (GM) food crops designed to tolerate the herbicide, and global use is increasing rapidly. Two recent reviews of glyphosate’s health hazards report conflicting results. An independent review by the International Agency for Research on Cancer (IARC) found that glyphosate is a “probable human carcinogen”. A review by the European Food Safety Agency (EFSA) found no evidence of carcinogenic hazard. These differing findings have produced regulatory uncertainty.

REGULATORY ACTIONS: Reflecting this regulatory uncertainty, the European Commission on November 27 2017, extended authorization for glyphosate for another 5 years, while the European Parliament opposed this decision and issued a call that pesticide approvals be based on peer-reviewed studies by independent scientists rather than on the current system that relies on proprietary industry studies.

RAMAZZINI INSTITUTE RESPONSE: The Ramazzini Institute has initiated a pilot study of glyphosate’s health hazards that will be followed by an integrated experimental research project. This evaluation will be independent of industry support and entirely sponsored by worldwide crowdfunding. The aim of the Ramazzini Institute project is to explore comprehensively the effects of exposures to glyphosate-based herbicides at current real-world levels on several toxicological endpoints, including carcinogenicity, long-term toxicity, neurotoxicity, endocrine disrupting effects, prenatal developmental toxicity, the microbiome and multi-generational effects. FULL TEXT

Landrigan, 2018

Philip J. Landrigan, “Pesticides and Human Reproduction,” JAMA Internal Medicine, 2018, 178:1, DOI:10.1001/jamainternmed.2017.5092

SUMMARY:

Invited commentary by Managing Weeds for Healthy Kids science team member Dr. Landrigan reports that herbicide use has increased sharply, with glyphosate use up 250-fold from 1974 to 2014.  And, “measurable levels of multiple pesticides are found in the bodies of nearly all Americans…and pesticides are capable of causing a wide range of asymptomatic effects at levels of exposure too low to produce overt signs and symptoms.”  New theories suggest that long term exposure to pesticides cause this kind of subclinical toxicity.  Dr. Landrigan reviews the known linkages, including in utero chlorpyrifos exposure leading to neurodevelopmental deficits, and reproductive injury including adverse birth outcomes and birth defects. He recommends: “We need to overcome the strident objections of the pesticide manufacturing industry, recognize the hidden costs of deregulation, and strengthen requirements for both premarket testing of new pesticides, as well as postmarketing surveillance of exposed populations— exactly as we do for another class of potent, biologically active molecules—drugs.”  FULL TEXT

Parvez et al., 2018

S. Parvez, R. R. Gerona, C. Proctor, M. Friesen, J. L. Ashby, J. L. Reiter, Z. Lui, and P. D. Winchester, “Glyphosate exposure in pregnancy and shortened gestational length: a prospective Indiana birth cohort study,” Environmental Health, 17:23, March 9, 2018, DOI: 10.1186/s12940-018-0367-0.

ABSTRACT:

BACKGROUND: Glyphosate (GLY) is the most heavily used herbicide worldwide but the extent of exposure in human pregnancy remains unknown. Its residues are found in the environment, major crops, and food items that humans, including pregnant women, consume daily. Since GLY exposure in pregnancy may also increase fetal exposure risk, we designed a birth-cohort study to determine exposure frequency, potential exposure pathways, and associations with fetal growth indicators and pregnancy length.

METHOD: Urine and residential drinking water samples were obtained from 71 women with singleton pregnancies living in Central Indiana while they received routine prenatal care. GLY measurements were performed using liquid chromatography-tandem mass spectrometry. Demographic and survey information relating to food and water consumption, stress, and residence were obtained by questionnaire. Maternal risk factors and neonatal outcomes were abstracted from medical records. Correlation analyses were used to assess relationships of urine GLY levels with fetal growth indicators and gestational length.

RESULTS: The mean age of participants was 29 years, and the majority were Caucasian. Ninety three percent of the pregnant women had GLY levels above the limit of detection (0.1 ng/mL). Mean urinary GLY was 3.40 ng/mL (range 0.5–7.20 ng/mL). Higher GLY levels were found in women who lived in rural areas (p = 0.02), and in those who consumed > 24 oz. of caffeinated beverages per day (p = 0.004). None of the drinking water samples had detectable GLY levels. We observed no correlations with fetal growth indicators such as birth weight percentile and head circumference. However, higher GLY urine levels were significantly correlated with shortened gestational lengths (r = − 0.28, p = 0.02).

CONCLUSIONS: This is the first study of GLY exposure in US pregnant women using urine specimens as a direct measure of exposure. We found that > 90% of pregnant women had detectable GLY levels and that these levels correlated significantly with shortened pregnancy lengths. Although our study cohort was small and regional and had limited racial/ethnic diversity, it provides direct evidence of maternal GLY exposure and a significant correlation with shortened pregnancy. Further  investigations in a more geographically and racially diverse cohort would be necessary before these findings could be generalized. FULL TEXT

Benbrook Consulting Services, 2016

Benbrook Consulting Services, Use of Dicamba on Crops as Surveyed by the National Agricultural Statistics Services (NASS), 2016.

SUMMARY:

Table detailing NASS reports of dicamba use (percent of total crop) and application rates.  FULL TEXT

Landrigan and Benbrook, 2015

Phillip Landrigan and Charles Benbrook, “GMOs, Herbicides, and Public Health,” Commentary in New England Journal of Medicine, 2015, 373:8, DOI: 10.1056/NEJMp1505660.

ABSTRACT:

Not Available

FULL TEXT

Back To Top
Search