skip to Main Content

Bibliography Tag: roundup

de Souza et al., 2017

de Souza, Janaina Sena, Kizys, Marina Malta Letro, da Conceicao, Rodrigo Rodrigues, Glebocki, Gabriel, Romano, Renata Marino, Ortiga-Carvalho, Tania Maria, Giannocco, Gisele, da Silva, Ismael Dale Cotrim Guerreiro, Dias da Silva, Magnus Regios, Romano, Marco Aurelio, & Chiamolera, Maria Izabel, “Perinatal exposure to glyphosate-based herbicide alters the thyrotrophic axis and causes thyroid hormone homeostasis imbalance in male rats,” Toxicology, 2017, 377, 25-37. DOI: 10.1016/j.tox.2016.11.005.

ABSTRACT:

Glyphosate-based herbicides (GBHs) are widely used in agriculture. Recently, several animal and epidemiological studies have been conducted to understand the effects of these chemicals as an endocrine disruptor for the gonadal system. The aim of the present study was to determine whether GBHs could also disrupt the hypothalamic-pituitary-thyroid (HPT) axis. Female pregnant Wistar rats were exposed to a solution containing GBH Roundup((R))Transorb (Monsanto). The animals were divided into three groups (control, 5mg/kg/day or 50mg/kg/day) and exposed from gestation day 18 (GD18) to post-natal day 5 (PND5). Male offspring were euthanized at PND 90, and blood and tissues samples from the hypothalamus, pituitary, liver and heart were collected for hormonal evaluation (TSH-Thyroid stimulating hormone, T3-triiodothyronine and T4-thyroxine), metabolomic and mRNA analyses of genes related to thyroid hormone metabolism and function. The hormonal profiles showed decreased concentrations of TSH in the exposed groups, with no variation in the levels of the thyroid hormones (THs) T3 and T4 between the groups. Hypothalamus gene expression analysis of the exposed groups revealed a reduction in the expression of genes encoding deiodinases 2 (Dio2) and 3 (Dio3) and TH transporters Slco1c1 (former Oatp1c1) and Slc16a2 (former Mct8). In the pituitary, Dio2, thyroid hormone receptor genes (Thra1 and Thrb1), and Slc16a2 showed higher expression levels in the exposed groups than in the control group. Interestingly, Tshb gene expression did not show any difference in expression profile between the control and exposed groups. Liver Thra1 and Thrb1 showed increased mRNA expression in both GBH-exposed groups, and in the heart, Dio2, Mb, Myh6 (former Mhca) and Slc2a4 (former Glut4) showed higher mRNA expression in the exposed groups. Additionally, correlation analysis between gene expression and metabolomic data showed similar alterations as detected in hypothyroid rats. Perinatal exposure to GBH in male rats modified the HPT set point, with lower levels of TSH likely reflecting post-translational events. Several genes regulated by TH or involved in TH metabolism and transport presented varying degrees of gene expression alteration that were probably programmed during intrauterine exposure to GBHs and reflects in peripheral metabolism. In conclusion, the role of GBH exposure in HPT axis disruption should be considered in populations exposed to this herbicide. FULL TEXT

De Almeida et al., 2018

De Almeida, L. K. S., Pletschke, B. I., & Frost, C. L., “Moderate levels of glyphosate and its formulations vary in their cytotoxicity and genotoxicity in a whole blood model and in human cell lines with different estrogen receptor status,” 3 Biotech, 2018, 8(10), 438. DOI: 10.1007/s13205-018-1464-z.

ABSTRACT:

In vitro studies were conducted to determine the short-term cytotoxic and genotoxic effects of pure glyphosate and two glyphosate formulations (Roundup® and Wipeout®) at concentrations relevant to human exposure using whole blood (cytotoxicity) and various cancer cell lines (cytotoxicity and genotoxicity). Pure glyphosate (pure glyph) and Roundup® (Ro) showed similar non-monotonic toxicological profiles at low dose exposure (from 10 microg/ml), whereas Wipeout® (Wo) demonstrated a monotonic reduction in cell viability from a threshold concentration of 50 microg/ml, when tested in whole blood. We evaluated whether using various cancer cells (the estrogen-E2-responsive HEC1A, MCF7 and the estrogen-insensitive MDA-MB-231) exposed to moderate doses (75-500 microg/ml) would indicate varied toxicity and results indicated significant effects in the HEC1A cancer cells. A non-monotonic reduction in cell viability was observed in HEC1A exposed to pure glyph (75-500 microg/ml) and proliferative effects were observed after exposure to Wo (75, 125 and 250 microg/ml). Genotoxicity assessment (test concentration 500 microg/ml) demonstrated DNA damage in the HEC1A and MDA-MB-231 cells. Adjuvants and/or glyphosate impurities were potential contributing factors of toxicity based on the differential toxicities displayed by Ro and Wo in human whole blood and the HEC1A cells. This study contributes to the existing knowledge about in vitro exposure to moderate concentrations of glyphosate or glyphosate formulations at cytotoxic and genotoxic levels. In addition, a suggestion on the relevance of the estrogen receptor status of the cell lines used is provided, leading to the need to further investigate a potential endocrine disruptive role. FULL TEXT

Anifandis et al., 2017

Anifandis, G., Amiridis, G., Dafopoulos, K., Daponte, A., Dovolou, E., Gavriil, E., Gorgogietas, V., Kachpani, E., Mamuris, Z., Messini, C. I., Vassiou, K., & Psarra, A. G., “The In Vitro Impact of the Herbicide Roundup on Human Sperm Motility and Sperm Mitochondria,” Toxics, 2017, 6:1, DOI:10.3390/toxics6010002.

ABSTRACT:

Toxicants, such as herbicides, have been hypothesized to affect sperm parameters. The most common method of exposure to herbicides is through spraying or diet. The aim of the present study was to investigate the effect of direct exposure of sperm to 1 mg/L of the herbicide Roundup on sperm motility and mitochondrial integrity. Sperm samples from 66 healthy men who were seeking semen analysis were investigated after written informed consent was taken. Semen analysis was performed according to the World Health Organization guidelines (WHO, 2010). Mitochondrial integrity was assessed through mitochondrial staining using a mitochondria-specific dye, which is exclusively incorporated into functionally active mitochondria. A quantity of 1 mg/L of Roundup was found to exert a deleterious effect on sperm’s progressive motility, after 1 h of incubation (mean difference between treated and control samples = 11.2%) in comparison with the effect after three hours of incubation (mean difference = 6.33%, p < 0.05), while the relative incorporation of the mitochondrial dye in mitochondria of the mid-piece region of Roundup-treated spermatozoa was significantly reduced compared to relative controls at the first hour of incubation, indicating mitochondrial dysfunction by Roundup. Our results indicate that the direct exposure of semen samples to the active constituent of the herbicide Roundup at the relatively low concentration of 1 mg/L has adverse effects on sperm motility, and this may be related to the observed reduction in mitochondrial staining. FULL TEXT

Manservisi et al., 2019

Manservisi, Fabiana, Lesseur, Corina, Panzacchi, Simona, Mandrioli, Daniele, Falcioni, Laura, Bua, Luciano, Manservigi, Marco, Spinaci, Marcella, Galeati, Giovanna, Mantovani, Alberto, Lorenzetti, Stefano, Miglio, Rossella, Andrade, Anderson Martino, Kristensen, David Møbjerg, Perry, Melissa J., Swan, Shanna H., Chen, Jia, & Belpoggi, Fiorella. “The Ramazzini Institute 13-week pilot study glyphosate-based herbicides administered at human-equivalent dose to Sprague Dawley rats: effects on development and endocrine system,” Environmental Health, 2019, 18(1). DOI:10.1186/s12940-019-0453-y.

ABSTRACT:

BACKGROUND: Glyphosate-based herbicides (GBHs) are broad-spectrum herbicides that act on the shikimate pathway in bacteria, fungi, and plants. The possible effects of GBHs on human health are the subject of an intense public debate for both its potential carcinogenic and non-carcinogenic effects, including potential effects on the endocrine system The present pilot study examine whether exposure to GBHs at the dose of glyphosate considered to be “safe” (the US Acceptable Daily Intake – ADI – of 1.75 mg/kg bw/day), starting from in utero life, affect the development and endocrine system across different life stages in Sprague Dawley (SD) rats.

METHODS: Glyphosate alone and Roundup Bioflow, a commercial brand of GBHs, were administered in drinking water at 1.75 mg/kg bw/day to F0 dams starting from the gestational day (GD) 6 (in utero) up to postnatal day (PND) 120. After weaning, offspring were randomly distributed in two cohorts: 8 M + 8F/group animals belonging to the 6-week cohort were sacrificed after puberty at PND 73 ± 2; 10 M + 10F/group animals belonging to the 13-week cohort were sacrificed at adulthood at PND 125 ± 2. Effects of glyphosate or Roundup exposure were assessed on developmental landmarks and sexual characteristics of pups.

RESULTS: In pups, anogenital distance (AGD) at PND 4 was statistically significantly increased both in Roundup treated males and females and in glyphosate-treated males. Age at first estrous (FE) was significantly delayed in the Roundup-exposed group and serum testosterone concentration significantly increased in Roundup-treated female offspring from the 13-week cohort compared to control animals. A statistically significant increase in plasma TSH concentration was observed in glyphosate-treated males compared with control animals as well as a statistically significant decrease in DHT and increase in BDNF in Roundup-treated males. Hormonal status imbalances were more pronounced in Roundup-treated rats after prolonged exposure.

CONCLUSIONS: The present pilot study demonstrate that GBHs exposure, from prenatal period to adulthood, induced endocrine effects and altered reproductive developmental parameters in male and female SD rats. In particular, it was associated with androgen-like effects, including a statistically significant increase of AGDs in both males and females, delay of FE and increased testosterone in female. FULL TEXT

Panzacchi et al., 2018

Panzacchi, S., Mandrioli, D., Manservisi, F., Bua, L., Falcioni, L., Spinaci, M., Galeati, G., Dinelli, G., Miglio, R., Mantovani, A., Lorenzetti, S., Hu, J., Chen, J., Perry, M. J., Landrigan, P. J., & Belpoggi, F. “The Ramazzini Institute 13-week study on glyphosate-based herbicides at human-equivalent dose in Sprague Dawley rats: study design and first in-life endpoints evaluation,” Environmental Health, 17(1), 52, 2018.  doi:10.1186/s12940-018-0393-y.

ABSTRACT:

BACKGROUND: Glyphosate-based herbicides (GBHs) are the most widely used pesticides worldwide, and glyphosate is the active ingredient of such herbicides, including the formulation known as Roundup. The massive and increasing use of GBHs results in not only the global burden of occupational exposures, but also increased exposure to the general population. The current pilot study represents the first phase of a long-term investigation of GBHs that we are conducting over the next 5 years. In this paper, we present the study design, the first evaluation of in vivo parameters and the determination of glyphosate and its major metabolite aminomethylphosphonic acid (AMPA) in urine.

METHODS: We exposed Sprague-Dawley (SD) rats orally via drinking water to a dose of glyphosate equivalent to the United States Acceptable Daily Intake (US ADI) of 1.75 mg/kg bw/day, defined as the chronic Reference Dose (cRfD) determined by the US EPA, starting from prenatal life, i.e. gestational day (GD) 6 of their mothers. One cohort was continuously dosed until sexual maturity (6-week cohort) and another cohort was continuously dosed until adulthood (13-week cohort). Here we present data on general toxicity and urinary concentrations of glyphosate and its major metabolite AMPA.

RESULTS: Survival, body weight, food and water consumption of the animals were not affected by the treatment with either glyphosate or Roundup. The concentration of both glyphosate and AMPA detected in the urine of SD rats treated with glyphosate were comparable to that observed in animals treated with Roundup, with an increase in relation to the duration of treatment. The majority of glyphosate was excreted unchanged. Urinary levels of the parent compound, glyphosate, were around 100-fold higher than the level of its metabolite, AMPA.

CONCLUSIONS: Glyphosate concentrations in urine showed that most part of the administered dose was excreted as unchanged parent compound upon glyphosate and Roundup exposure, with an increasing pattern of glyphosate excreted in urine in relation to the duration of treatment. The adjuvants and the other substances present in Roundup did not seem to exert a major effect on the absorption and excretion of glyphosate. Our results demonstrate that urinary glyphosate is a more relevant marker of exposure than AMPA in the rodent model. FULL TEXT

Mao et al., 2018

Mao, Q., Manservisi, F., Panzacchi, S., Mandrioli, D., Menghetti, I., Vornoli, A., Bua, L., Falcioni, L., Lesseur, C., Chen, J., Belpoggi, F., & Hu, J., “The Ramazzini Institute 13-week pilot study on glyphosate and Roundup administered at human-equivalent dose to Sprague Dawley rats: effects on the microbiome,” Environmental Health, 17(1), 50, 2018. doi:10.1186/s12940-018-0394-x.

ABSTRACT:

BACKGROUND: Glyphosate-based herbicides (GBHs) are broad-spectrum herbicides that act on the shikimate pathway in bacteria, fungi, and plants. The possible effects of GBHs on human health are the subject of an intense public debate for both its potential carcinogenic and non-carcinogenic effects, including its effects on microbiome. The present pilot study examines whether exposure to GBHs at doses of glyphosate considered to be “safe” (the US Acceptable Daily Intake – ADI – of 1.75 mg/kg bw/day), starting from in utero, may modify the composition of gut microbiome in Sprague Dawley (SD) rats.

METHODS: Glyphosate alone and Roundup, a commercial brand of GBHs, were administered in drinking water at doses comparable to the US glyphosate ADI (1.75 mg/kg bw/day) to F0 dams starting from the gestational day (GD) 6 up to postnatal day (PND) 125. Animal feces were collected at multiple time points from both F0 dams and F1 pups. The gut microbiota of 433 fecal samples were profiled at V3-V4 region of 16S ribosomal RNA gene and further taxonomically assigned and assessed for diversity analysis. We tested the effect of exposure on overall microbiome diversity using PERMANOVA and on individual taxa by LEfSe analysis.

RESULTS: Microbiome profiling revealed that low-dose exposure to Roundup and glyphosate resulted in significant and distinctive changes in overall bacterial composition in F1 pups only. Specifically, at PND31, corresponding to pre-pubertal age in humans, relative abundance for Bacteriodetes (Prevotella) was increased while the Firmicutes (Lactobacillus) was reduced in both Roundup and glyphosate exposed F1 pups compared to controls.

CONCLUSIONS: This study provides initial evidence that exposures to commonly used GBHs, at doses considered safe, are capable of modifying the gut microbiota in early development, particularly before the onset of puberty. These findings warrant future studies on potential health effects of GBHs in early development such as childhood. FULL TEXT

Landrigan and Belpoggi, 2018

Landrigan, P. J., and Belpoggi, F.,”The need for independent research on the health effects of glyphosate-based herbicides,” Environmental Health, 17(1), 51, 2018, doi:10.1186/s12940-018-0392-z.

ABSTRACT:

BACKGROUND: Glyphosate, formulated as Roundup, is the world’s most widely used herbicide. Glyphosate is used extensively on genetically modified (GM) food crops designed to tolerate the herbicide, and global use is increasing rapidly. Two recent reviews of glyphosate’s health hazards report conflicting results. An independent review by the International Agency for Research on Cancer (IARC) found that glyphosate is a “probable human carcinogen”. A review by the European Food Safety Agency (EFSA) found no evidence of carcinogenic hazard. These differing findings have produced regulatory uncertainty.

REGULATORY ACTIONS: Reflecting this regulatory uncertainty, the European Commission on November 27 2017, extended authorization for glyphosate for another 5 years, while the European Parliament opposed this decision and issued a call that pesticide approvals be based on peer-reviewed studies by independent scientists rather than on the current system that relies on proprietary industry studies.

RAMAZZINI INSTITUTE RESPONSE: The Ramazzini Institute has initiated a pilot study of glyphosate’s health hazards that will be followed by an integrated experimental research project. This evaluation will be independent of industry support and entirely sponsored by worldwide crowdfunding. The aim of the Ramazzini Institute project is to explore comprehensively the effects of exposures to glyphosate-based herbicides at current real-world levels on several toxicological endpoints, including carcinogenicity, long-term toxicity, neurotoxicity, endocrine disrupting effects, prenatal developmental toxicity, the microbiome and multi-generational effects. FULL TEXT

Mesnage et al., 2016

Robin Mesnage, Sarah Z. Agapito-Tenfen, Vinicius Vilperte, George Renney, Malcolm Ward, Gilles-Eric Séralini, Rubens O. Nodari & Michael N. Antoniou, “An integrated multi-omics analysis of the NK603 Roundup-tolerant GM maize reveals metabolism  disturbances caused by the transformation process,” Nature: Scientific Reports, 2016, 6:37855, DOI: 10.1038/srep37855

ABSTRACT:

Glyphosate tolerant genetically modified (GM) maize NK603 was assessed as ‘substantially equivalent’ to its isogenic counterpart by a nutrient composition analysis in order to be granted market approval. We have applied contemporary in depth molecular profiling methods of NK603 maize kernels (sprayed or unsprayed with Roundup) and the isogenic corn to reassess its substantial equivalence status. Proteome profiles of the maize kernels revealed alterations in the levels of enzymes of glycolysis and TCA cycle pathways, which were reflective of an imbalance in energy metabolism. Changes in proteins and metabolites of glutathione metabolism were indicative of increased oxidative stress. The most pronounced metabolome differences between NK603 and its isogenic counterpart consisted of an increase in polyamines including N-acetyl-cadaverine (2.9-fold), N-acetylputrescine (1.8-fold), putrescine (2.7-fold) and cadaverine (28-fold), which depending on context can be either protective or a cause of toxicity. Our molecular profiling results show that NK603 and its isogenic control are not substantially equivalent. FULL TEXT

Séralini et al., 2014

Gilles-Eric Séralini, Emilie Clair, Robin Mesnage, Steeve Gress, Nicolas Defarge, Manuela Malatesta, Didier Hennequin and Joël Spiroux de Vendômois, “Republished study: long-term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize,” Environmental Sciences Europe, Bridging Science and Regulation at the Regional and European Level, 2014, 26:14. DOI: 10.1186/s12302-014-0014-5

ABSTRACT

BACKGROUND: The health effects of a Roundup-tolerant NK603 genetically modified (GM) maize(from 11% in the diet), cultivated with or without Roundup application and Roundup alone (from 0.1 ppb of the full pesticide containing glyphosate and adjuvants) in drinking water, were evaluated for 2 years in rats. This study constitutes a follow-up investigation of a 90-day feeding study conducted by Monsanto in order to obtain commercial release of this GMO, employing the same rat strain and analyzing biochemical parameters on the same number of animals per group as our investigation. Our research represents the first chronic study on these substances, in which all observations including tumors are reported chronologically. Thus, it was not designed as a carcinogenicity study. We report the major findings with 34 organs observed and 56 parameters analyzed at 11 time points for most organs.

RESULTS: Biochemical analyses confirmed very significant chronic kidney deficiencies, for all treatments and both sexes; 76% of the altered parameters were kidney-related.In treated males, liver congestions and necrosis were 2.5 to 5.5 times higher.Marked and severe nephropathies were also generally 1.3 to 2.3 times greater. In females, all treatment groups showed a two- to threefold increase in mortality,and deaths were earlier. This difference was also evident in three male groups fed with GM maize. All results were hormone- and sex-dependent, and the pathological profiles were comparable. Females developed large mammary tumors more frequently and before controls; the pituitary was the second most disabled organ; the sex hormonal balance was modified by consumption of GM maize and Roundup treatments.Males presented up to four times more large palpable tumors starting 600 days earlier than in the control group, in which only one tumor was noted. These results may be explained by not only the non-linear endocrine-disrupting effects of Roundup but also by the over expression of the EPSPS transgene or other mutational effects in the GM maize and their metabolic consequences.

CONCLUSION: Our findings imply that long-term (2 year) feeding trials need to be conducted to thoroughly evaluate the safety of GM foods and pesticides in their full commercial formulations.  FULL TEXT

Bolognesi et al., 1997

Claudia Bolognesi, Stefania Bonatti, Paolo Degan, Elena Gallerani, Marco Peluso, Roberta Rabboni, Paola Roggieri, and Angelo Abbondandolo, “Genotoxic Activity of Glyphosate and Its Technical Formulation Roundup,” Journal of Agricultural and Food Chemistry, 45, 1997, DOI: 10.1021/jf9606518

ABSTRACT:

Glyphosate (N-phosphonomethylglycine) is an effective herbicide acting on the synthesis of aromatic amino acids in plants. The genotoxic potential of this herbicide has been studied:  the results available in the open literature reveal a weak activity of the technical formulation. In this study, the formulated commercial product, Roundup, and its active agent, glyphosate, were tested in the same battery of assays for the induction of DNA damage and chromosomal effects in vivoand in vitro. Swiss CD1 mice were treated intraperitoneally with test substances, and the DNA damage was evaluated by alkaline elution technique and 8-hydroxydeoxyguanosine (8-OHdG) quantification in liver and kidney. The chromosomal damage of the two pesticide preparations was also evaluated in vivo in bone marrow of mice as micronuclei frequency and in vitro in human lymphocyte culture as SCE frequency. A DNA-damaging activity as DNA single-strand breaks and 8-OHdG and a significant increase in chromosomal alterations were observed with both substances in vivo and in vitro. A weak increment of the genotoxic activity was evident using the technical formulation. FULL TEXT

Back To Top
Search