skip to Main Content

Bibliography Tag: pesticide exposure

Mnif et al., 2011

Mnif W, Hassine AI, Bouaziz A, Bartegi A, Thomas O, Roig B. “Effect of endocrine disruptor pesticides: a review.” International Journal of Environmental Research and Public Health. 2011 Jun;8(6):2265-303. DOI: 10.3390/ijerph8062265.

ABSTRACT: Endocrine disrupting chemicals (EDC) are compounds that alter the normal functioning of the endocrine system of both wildlife and humans. A huge number of chemicals have been identified as endocrine disruptors, among them several pesticides. Pesticides are used to kill unwanted organisms in crops, public areas, homes and gardens, and parasites in medicine. Human are exposed to pesticides due to their occupations or through dietary and environmental exposure (water, soil, air). For several years, there have been enquiries about the impact of environmental factors on the occurrence of human pathologies. This paper reviews the current knowledge of the potential impacts of endocrine disruptor pesticides on human health. FULL TEXT

Ndonwi et al., 2019

Ndonwi EN, Atogho-Tiedeu B, Lontchi-Yimagou E, Shinkafi TS, Nanfa D, Balti EV, Indusmita R, Mahmood A, Katte JC, Mbanya A, Matsha T, Mbanya JC, Shakir A, Sobngwi E. “Gestational Exposure to Pesticides Induces Oxidative Stress and Lipid Peroxidation in Offspring that Persist at Adult Age in an Animal Model.” Toxicological Research, 2019 Jul;35(3):241-248; DOI: 10.5487/TR.2019.35.3.241.

ABSTRACT:

Pesticide exposure may induce biochemical alterations including oxidative stress and lipid peroxidation. However, in the context of developmental origin of health and disease, putative trans-generational effect of exposure to pesticides are insufficiently studied. We therefore aimed to evaluate the biochemical effect of gestational exposure to four pesticides on female Wistar rats and their offspring at adult age. We studied 30 female nulliparous Wistar rats divided into 5 equal groups. Group 1 served as the control group and received distilled water while group 2, 3, 4 and 5 received orally pesticide 1 (imidacloprid), pesticide 2 (chlorpyrifos), pesticide 3 (imidacloprid + lambda cyhalothrin) and pesticide 4 (oxamyl) respectively once daily throughout gestation at a dose equivalent to 1/10 lethal dose 50. The mothers were followed up until one month post gestation. The offspring were followed up from birth until adult age (12 weeks). In all animals at each time point we evaluated malondialdehyde (MDA), oxidative stress and liver function enzymes. There was similar variation of total body weight in all the groups during and after gestation. However, Female Wistar rats of the exposed groups had significant alterations in liver SOD (-30.8% to +64.1%), catalase (-38.8% to -85.7%) and GSH (-29.2% to -86.5%) and; kidney catalase (> 100%), GSH (> 100%). Moreover, MDA, alanine transaminase (ALT) and aspartate transaminase (AST) levels were significantly higher in pesticide exposed rats compared to the control group. Similar alterations in antioxidant enzymes, MDA and liver function enzymes were observed in offspring of treated rats evidenced at weaning and persisting until adult age. Exposure to pesticides causes oxidative stress and lipid peroxidation in exposed female Wistar rats and their offspring. The persistence in offspring at adult age suggests transgenerational adverse effects. FULL TEXT

Maurice et al., 2021

Maurice C, Dalvai M, Lambrot R, Deschênes A, Scott-Boyer M-P, McGraw S, Chan D, Côté N, Ziv-Gal A, Flaws JA, Droit A, Trasler J, Kimmins S, Bailey JL. “Early-Life Exposure to Environmental Contaminants Perturbs the Sperm Epigenome and Induces Negative Pregnancy Outcomes for Three Generations via the Paternal Lineage.” Epigenomes. 2021, 5(2):10; DOI:10.3390/epigenomes5020010

ABSTRACT:

Due to the grasshopper effect, the Arctic food chain in Canada is contaminated with persistent organic pollutants (POPs) of industrial origin, including polychlorinated biphenyls and organochlorine pesticides. Exposure to POPs may be a contributor to the greater incidence of poor fetal growth, placental abnormalities, stillbirths, congenital defects and shortened lifespan in the Inuit population compared to non-Aboriginal Canadians. Although maternal exposure to POPs is well established to harm pregnancy outcomes, paternal transmission of the effects of POPs is a possibility that has not been well investigated. We used a rat model to test the hypothesis that exposure to POPs during gestation and suckling leads to developmental defects that are transmitted to subsequent generations via the male lineage. Indeed, developmental exposure to an environmentally relevant Arctic POPs mixture impaired sperm quality and pregnancy outcomes across two subsequent, unexposed generations and altered sperm DNA methylation, some of which are also observed for two additional generations. Genes corresponding to the altered sperm methylome correspond to health problems encountered in the Inuit population. These findings demonstrate that the paternal methylome is sensitive to the environment and that some perturbations persist for at least two subsequent generations. In conclusion, although many factors influence health, paternal exposure to contaminants plays a heretofore-underappreciated role with sperm DNA methylation contributing to the molecular underpinnings involved. FULL TEXT

Syafrudin et al., 2021

Syafrudin M, Kristanti RA, Yuniarto A, Hadibarata T, Rhee J, Al-Onazi WA, Algarni TS, Almarri AH, Al-Mohaimeed AM. Pesticides in Drinking Water-A Review. International Journal of Environmental Research and Public Health. 2021 Jan 8;18(2):468. DOI: 10.3390/ijerph18020468.

ABSTRACT:

The ubiquitous problem of pesticide in aquatic environment are receiving worldwide concern as pesticide tends to accumulate in the body of the aquatic organism and sediment soil, posing health risks to the human. Many pesticide formulations had introduced due to the rapid growth in the global pesticide market result from the wide use of pesticides in agricultural and non-agricultural sectors. The occurrence of pesticides in the water body is derived by the runoff from the agricultural field and industrial wastewater. Soluble pesticides were carried away by water molecules especially during the precipitation event by percolating downward into the soil layers and eventually reach surface waters and groundwater. Consequently, it degrades water quality and reduces the supply of clean water for potable water. Long-time exposure to the low concentration of pesticides had resulted in non-carcinogenic health risks. The conventional method of pesticide treatment processes encompasses coagulation-flocculation, adsorption, filtration and sedimentation, which rely on the phase transfer of pollutants. Those methods are often incurred with a relatively high operational cost and may cause secondary pollution such as sludge formation. Advanced oxidation processes (AOPs) are recognized as clean technologies for the treatment of water containing recalcitrant and bio-refractory pollutants such as pesticides. It has been adopted as recent water purification technology because of the thermodynamic viability and broad spectrum of applicability. This work provides a comprehensive review for occurrence of pesticide in the drinking water and its possible treatment. FULL TEXT

LaCanne and Lundgren, 2018

LaCanne, C. E., & Lundgren, J. G.; “Regenerative agriculture: merging farming and natural resource conservation profitably;” PeerJ, 2018, 6, e4428; DOI: 10.7717/peerj.4428.

ABSTRACT:

Most cropland in the United States is characterized by large monocultures, whose productivity is maintained through a strong reliance on costly tillage, external fertilizers, and pesticides (Schipanski et al., 2016). Despite this, farmers have developed a regenerative model of farm production that promotes soil health and biodiversity, while producing nutrient-dense farm products profitably. Little work has focused on the relative costs and benefits of novel regenerative farming operations, which necessitates studying in situ, farmer-defined best management practices. Here, we evaluate the relative effects of regenerative and conventional corn production systems on pest management services, soil conservation, and farmer profitability and productivity throughout the Northern Plains of the United States. Regenerative farming systems provided greater ecosystem services and profitability for farmers than an input-intensive model of corn production. Pests were 10-fold more abundant in insecticide-treated corn fields than on insecticide-free regenerative farms, indicating that farmers who proactively design pest-resilient food systems outperform farmers that react to pests chemically. Regenerative fields had 29% lower grain production but 78% higher profits over traditional corn production systems. Profit was positively correlated with the particulate organic matter of the soil, not yield. These results provide the basis for dialogue on ecologically based farming systems that could be used to simultaneously produce food while conserving our natural resource base: two factors that are pitted against one another in simplified food production systems. To attain this requires a systems-level shift on the farm; simply applying individual regenerative practices within the current production model will not likely produce the documented results. FULL TEXT

Schipanski et al., 2016

Schipanski, Meagan E., MacDonald, Graham K., Rosenzweig, Steven, Chappell, M. Jahi, Bennett, Elena M., Kerr, Rachel Bezner, Blesh, Jennifer, Crews, Timothy, Drinkwater, Laurie, Lundgren, Jonathan G., & Schnarr, Cassandra; “Realizing Resilient Food Systems;” BioScience, 2016, 66(7), 600-610; DOI: 10.1093/biosci/biw052.

ABSTRACT:

Food systems are under increasing pressure to produce sufficient food for the global population, decrease the environmental impacts of production, and buffer against complex global change. Food security also remains elusive for many populations worldwide. Greater emphasis on food system resilience could reduce these vulnerabilities. We outline integrated strategies that together could foster food system resilience across scales, including (a) integrating gender equity and social justice into food security research and initiatives, (b) increasing the use of ecological processes rather than external inputs for crop production, (c) fostering regionalized food distribution networks and waste reduction, and (d) linking human nutrition and agricultural production policies. Enhancing social–ecological links and fostering adaptive capacity are essential to cope with short-term volatility and longer-term global change pressures. Finally, we highlight regional case studies that have enhanced food system resilience for vulnerable populations. Efforts in these areas could have dramatic impacts on global food system resilience. FULL TEXT

Ferguson et al., 2019

Ferguson, K. K., Rosario, Z., McElrath, T. F., Velez Vega, C., Cordero, J. F., Alshawabkeh, A., & Meeker, J. D.; “Demographic risk factors for adverse birth outcomes in Puerto Rico in the PROTECT cohort;” Plos One, 2019, 14(6), e0217770; DOI: 10.1371/journal.pone.0217770.

ABSTRACT:

Preterm birth is a major public health problem, especially in Puerto Rico where the rates are among the highest observed worldwide, reaching 18% in 2011. The Puerto Rico Testsite for Exploring Contamination Threats (PROTECT) study is an ongoing investigation of environmental factors that contribute to this condition. In the present analysis, we sought to examine common risk factors for preterm birth and other adverse birth outcomes which have not been characterized previously in this unique population. Pregnant women from the PROTECT cohort are recruited from the heavily contaminated Northern coast of the island of Puerto Rico and are free of pre-existing conditions like diabetes. We examined associations between basic demographic, behavioral (e.g., tobacco and alcohol use), and pregnancy (e.g., season and year of delivery) characteristics as well as municipality of residence in relation to preterm birth (<37 weeks gestation), postterm birth (>/=41 weeks gestation), and small and large for gestational age in univariate and multivariate logistic regression models. Between 2011 and 2017, 1028 live singleton births were delivered as part of the PROTECT cohort. Of these, 107 (10%) were preterm. Preterm birth rates were higher among women with low socioeconomic status, as indicated by education level and income, and among women with high pre-pregnancy body mass index (BMI). Odds ratios of small for gestational age delivery were higher for women who reported tobacco use in pregnancy and lower for women who delivered in the hurricane and dengue season (July-October). Overall, in pregnant women residing in Puerto Rico, socioeconomic status was associated with preterm birth but few other factors were associated with this or other adverse outcomes of pregnancy. Research to understand environmental factors that could be contributing to the preterm birth epidemic in Puerto Rico is necessary. FULL TEXT

Silver et al., 2021

Silver, M. K., Fernandez, J., Tang, J., McDade, A., Sabino, J., Rosario, Z., Velez Vega, C., Alshawabkeh, A., Cordero, J. F., & Meeker, J. D.; “Prenatal Exposure to Glyphosate and Its Environmental Degradate, Aminomethylphosphonic Acid (AMPA), and Preterm Birth: A Nested Case-Control Study in the PROTECT Cohort (Puerto Rico);” Environmental Health Perspectives, 2021, 129(5), 57011; DOI: 10.1289/EHP7295.

ABSTRACT:

BACKGROUND: Glyphosate (GLY) is the most heavily used herbicide in the world. Despite nearly ubiquitous exposure, few studies have examined prenatal GLY exposure and potentially adverse pregnancy outcomes. Preterm birth (PTB) is a risk factor for neonatal mortality and adverse health effects in childhood.

OBJECTIVES: We examined prenatal exposure to GLY and a highly persistent environmental degradate of GLY, aminomethylphosphonic acid (AMPA), and odds of PTB in a nested case-control study within the ongoing Puerto Rico Testsite for Exploring Contamination Threats (PROTECT) pregnancy cohort in northern Puerto Rico.

METHODS: GLY and AMPA in urine samples collected at 18+/-2 (Visit 1) and 26+/-2 (Visit 3) wk gestation (53 cases/194 randomly selected controls) were measured using gas chromatography tandem mass spectrometry. Multivariable logistic regression was used to estimate associations with PTB (delivery <37wk completed gestation).

RESULTS: Detection rates in controls were 77.4% and 77.5% for GLY and 52.8% and 47.7% for AMPA, and geometric means (geometric standard deviations) were 0.44 (2.50) and 0.41 (2.56) mug/L for GLY and 0.25 (3.06) and 0.20 (2.87) mug/L for AMPA, for Visits 1 and 3, respectively. PTB was significantly associated with specific gravity-corrected urinary GLY and AMPA at Visit 3, whereas associations with levels at Visit 1 and the Visits 1-3 average were largely null or inconsistent. Adjusted odds ratios (ORs) for an interquartile range increase in exposure at Visit 3 were 1.35 (95% CI: 0.99, 1.83) and 1.67 (95% CI: 1.26, 2.20) for GLY and AMPA, respectively. ORs for Visit 1 and the visit average were closer to the null.

DISCUSSION: Urine GLY and AMPA levels in samples collected near the 26th week of pregnancy were associated with increased odds of PTB in this modestly sized nested case-control study. Given the widespread use of GLY, multiple potential sources of AMPA, and AMPA’s persistence in the environment, as well as the potential for long-term adverse health effects in preterm infants, further investigation in other populations is warranted.

FULL TEXT

Kogevinas, 2021

Kogevinas, M.; “Glyphosate Exposure during Pregnancy and Preterm Birth (More Research Is Needed);” Environmental Health Perspectives, 2021, 129(5), 51301; DOI: 10.1289/EHP9428.

ABSTRACT:

Not Available

FULL TEXT

Ganesan and Keating, 2020

Ganesan, S., & Keating, A. F.; “Ovarian mitochondrial and oxidative stress proteins are altered by glyphosate exposure in mice;” Toxicology and Applied Pharmacology, 2020, 402, 115116; DOI: 10.1016/j.taap.2020.115116.

ABSTRACT:

Glyphosate (GLY) usage for weed control is extensive. To investigate ovarian impacts of chronic GLY exposure, female C57BL6 mice were orally administered saline as vehicle control (CT) or GLY at 0.25 (G0.25), 0.5 (G0.5), 1.0 (G1.0), 1.5 (G1.5), or 2 (G2.0) mg/kg for five days per wk. for 20 wks. Feed intake increased (P < .05) in G1.5 and G2.0 mice and body weight increased (P < .05) in G1.0 mice. There was no impact of GLY on estrous cyclicity, nor did GLY affect circulating levels of 17beta-estradiol or progesterone. Exposure to GLY did not impact heart, liver, spleen, kidney or uterus weight. Both ovarian weight and follicle number were increased (P < .05) by G2.0 but not affected at lower GLY concentrations. There were no detectable effects of GLY on ovarian protein abundance of pAKT, AKT, pAKT:AKT, gammaH2AX, STAR, CYP11A1, HSD3B, CYP19A, ERA or ERB. Increased (P < .05) abundance of ATM protein was observed at G0.25 but not higher GLY doses. A dose-dependent effect (P < .10) of GLY exposure on ovarian protein abundance as quantified by LC-MS/MS was observed (G0.25-4 increased, 19 decreased; G0.5-5 increased, 25 decreased; G1.0-65 increased, 7 decreased; G1.5-145 increased, 2 decreased; G2.0-159 increased, 4 decreased). Pathway analysis was performed using DAVID and identified glutathione metabolism, metabolic and proteasome pathways as GLY exposure targets. These data indicate that chronic low-level exposure to GLY alters the ovarian proteome and may ultimately impact ovarian function. FULL TEXT

Back To Top
Search