skip to Main Content

Bibliography Tag: pesticide exposure

Perry, 2008

Melissa J. Perry, “Effects of environmental and occupational pesticide exposure on human sperm: a systematic review,” Human Reproduction Update, 2008, 14:3, DOI: 10.1093/HUMUPD/DMM039.

ABSTRACT:

Relatively recent discoveries of the hormone disrupting properties of some pesticides have raised interest in how contemporary pesticide exposures, which primarily take the form of low level environmental or occupational exposures, impact spermatogenesis. The objective of the present review was to summarize results to date of studies examining pesticide effects on human sperm. Outcomes evaluated included sperm parameters, DNA damage and numerical chromosome aberrations (aneuploidy (disomy, nullisomy) or diploidy). Studies investigating sperm in men environmentally and/or occupationally exposed to any types of pesticides were included in the review. The targeted literature search over the last 15 years showed a range of pesticide classes have been investigated including pyrethroids, organophosphates, phenoxyacetic acids, carbamates, organochlorines and pesticide mixtures. None of the studies involved acute exposure events such as chemical accidents. There were 20 studies evaluating semen quality, of which 13 studies reported an association between exposure and semen quality; 6 studies evaluating DNA damage, of which 3 reported an association with exposure; and 6 studies assessing sperm aneuploidy or diploidy, of which 4 reported an association with exposure. Studies varied widely in methods, exposures and outcomes. Although suggestive for semen parameters, the epidemiologic evidence accumulated thus far remains equivocal as to the spermatotoxic and aneugenic potential of pesticides given the small number of published studies. This question warrants more investigation and suggestions for future studies are outlined.  FULL TEXT

Cimino et al., 2017

Andria M. Cimino, Abee L. Boyles, Kristina A. Thayer, and Melissa J. Perry, “Effects of Neonicotinoid Pesticide Exposure on Human Health: A Systematic Review,” Environmental Health Perspectives, 2017, 125:2, DOI: 10.1289/EHP515.

ABSTRACT:

BACKGROUND: Numerous studies have identified detectable levels of neonicotinoids (neonics) in the environment, adverse effects of neonics in many species, including mammals, and pathways through which human exposure to neonics could occur, yet little is known about the human health effects of neonic exposure.

OBJECTIVE: In this systematic review, we sought to identify human population studies on the health effects of neonics.

METHODS: Studies published in English between 2005 and 2015 were searched using PubMed, Scopus, and Web of Science databases. No restrictions were placed on the type of health outcome assessed. Risk of bias was assessed using guidance developed by the National Toxicology Program’s Office of Health Assessment and Translation.

RESULTS: Eight studies investigating the human health effects of exposure to neonics were identified. Four examined acute exposure: Three neonic poisoning studies reported two fatalities (n = 1,280 cases) and an occupational exposure study of 19 forestry workers reported no adverse effects. Four general population studies reported associations between chronic neonic exposure and adverse developmental or neurological outcomes, including tetralogy of Fallot (AOR 2.4, 95% CI: 1.1, 5.4), anencephaly (AOR 2.9, 95% CI: 1.0, 8.2), autism spectrum disorder [AOR 1.3, 95% credible interval (CrI): 0.78, 2.2], and a symptom cluster including memory loss and finger tremor (OR 14, 95% CI: 3.5, 57). Reported odds ratios were based on exposed compared to unexposed groups.

CONCLUSIONS: The studies conducted to date were limited in number with suggestive but methodologically weak findings related to chronic exposure. Given the wide-scale use of neonics, more studies are needed to fully understand their effects on human health.  FULL TEXT

Canadian Food Inspection Agency, 2017

Canadian Food Inspection Agency, “Safeguarding with Science: Glyphosate Testing in 2015-2016,” 2017, CFIA Science Branch Survey Report.

ABSTRACT:

In 2015-2016, the CFIA tested a total of 3,188 food samples for glyphosate. Glyphosate was found in 29.7% of samples. Glyphosate residues above MRLs were found in only 1.3% of samples. This data was evaluated by Health Canada and no human health concerns were identified.  FULL TEXT

Vandenberg et al., 2017

Laura N Vandenberg, Bruce Blumberg, Michael N Antoniou, Charles M Benbrook, Lynn Carroll, Theo Colborn, Lorne G Everett, Michael Hansen, Philip J Landrigan, Bruce P Lanphear, Robin Mesnage, Frederick S vom Saal, Wade V Welshons, John Peterson Myers, “Is it time to reassess current safety standards for glyphosate-based herbicides?”,  Journal of Epidemiology and Community Health, 2017, 0, DOI: 10.113/jech-2016-208463.

ABSTRACT:

Use of glyphosate-based herbicides (GBHs) increased ∼100-fold from 1974 to 2014. Additional increases are expected due to widespread emergence of glyphosate-resistant weeds, increased application of GBHs, and preharvest uses of GBHs as desiccants. Current safety assessments rely heavily on studies conducted over 30 years ago. We have considered information on GBH use, exposures, mechanisms of action, toxicity and epidemiology. Human exposures to glyphosate are rising, and a number of in vitro and in vivo studies challenge the basis for the current safety assessment of glyphosate and GBHs. We conclude that current safety standards for GBHs are outdated and may fail to protect public health or the environment. To improve safety standards, the following are urgently needed: (1) human biomonitoring for glyphosate and its metabolites; (2) prioritisation of glyphosate and GBHs for hazard assessments, including toxicological studies that use state-of-the-art approaches; (3) epidemiological studies, especially of occupationally exposed agricultural workers, pregnant women and their children and (4) evaluations of GBHs in commercially used formulations, recognising that herbicide mixtures likely have effects that are not predicted by studying glyphosate alone.  FULL TEXT

Chang et al., 2011

Feng-chih Chang, Matt F. Simcik, Paul D. Capel, “Occurrence and fate of the herbicide glyphosate and its degradate aminomethylphosphonic acid in the atmosphere,” Environmental Toxicology and Chemistry, 2011, 30:3, DOI: 10.1002/ETC.431.

ABSTRACT:

This is the first report on the ambient levels of glyphosate, the most widely used herbicide in the United States, and its major degradation product, aminomethylphosphonic acid (AMPA), in air and rain. Concurrent, weekly integrated air particle and rain samples were collected during two growing seasons in agricultural areas in Mississippi and Iowa. Rain was also collected in Indiana in a preliminary phase of the study. The frequency of glyphosate detection ranged from 60 to 100% in both air and rain. The concentrations of glyphosate ranged from <0.01 to 9.1 ng/m3 and from <0.1 to 2.5 µg/L in air and rain samples, respectively. The frequency of detection and median and maximum concentrations of glyphosate in air were similar or greater to those of the other high-use herbicides observed in the Mississippi River basin, whereas its concentration in rain was greater than the other herbicides. It is not known what percentage of the applied glyphosate is introduced into the air, but it was estimated that up to 0.7% of application is removed from the air in rainfall. Glyphosate is efficiently removed from the air; it is estimated that an average of 97% of the glyphosate in the air is removed by a weekly rainfall ≥30 mm.   FULL TEXT

Herzine et al., 2016

Ameziane Herzine, Anthony Laugeray, Justyne Feat, Arnaud Menuet, Valérie Quesniaux, Olivier Richard, Jacques Pichon, Céline Montécot-Dubourg, Olivier Perche, and Stéphane Mortaud,”Perinatal Exposure to Glufosinate Ammonium Herbicide Impairs Neurogenesis and Neuroblast Migration through Cytoskeleton Destabilization,” Frontiers in Cellular Neuroscience, 2016, 10:191, DOI: 10.3389/FNCEL.2016.00191.

ABSTRACT:

Neurogenesis, a process of generating functional neurons from neural precursors, occurs throughout life in restricted brain regions such as the subventricular zone (SVZ). During this process, newly generated neurons migrate along the rostral migratory stream to the olfactory bulb to replace granule cells and periglomerular neurons. This neuronal migration is pivotal not only for neuronal plasticity but also for adapted olfactory based behaviors. Perturbation of this highly controlled system by exogenous chemicals has been associated with neurodevelopmental disorders. We reported recently that perinatal exposure to low dose herbicide glufosinate ammonium (GLA), leads to long lasting behavioral defects reminiscent of Autism Spectrum Disorder-like phenotype in the offspring (Laugeray et al., 2014). Herein, we demonstrate that perinatal exposure to low dose GLA induces alterations in neuroblast proliferation within the SVZ and abnormal migration from the SVZ to the olfactory bulbs. These disturbances are not only concomitant to changes in cell morphology, proliferation and apoptosis, but are also associated with transcriptomic changes. Therefore, we demonstrate for the first time that perinatal exposure to low dose GLA alters SVZ neurogenesis. Jointly with our previous work, the present results provide new evidence on the link between molecular and cellular consequences of early life exposure to the herbicide GLA and the onset of ASD-like phenotype later in life.  FULL TEXT

Winchester et al., 2009

Winchester PD, Huskins J, Ying J, “Agrichemicals in surface water and birth defects in the United States,” Acta Paediatrica, 2009, 98:4, DOI: 10.1111/j.1651-2227.2008.01207.

ABSTRACT:

OBJECTIVES: To investigate if live births conceived in months when surface water agrichemicals are highest are at greater risk for birth defects.

METHODS: Monthly concentrations during 1996-2002 of nitrates, atrazine and other pesticides were calculated using United States Geological Survey’s National Water Quality Assessment data. Monthly United States birth defect rates were calculated for live births from 1996 to 2002 using United States Centers for Disease Control and Prevention natality data sets. Birth defect rates by month of last menstrual period (LMP) were then compared to pesticide/nitrate means using logistical regression models.

RESULTS: Mean concentrations of agrichemicals were highest in April-July. Total birth defects, and eleven of 22 birth defect subcategories, were more likely to occur in live births with LMPs between April and July. A significant association was found between the season of elevated agrichemicals and birth defects.

CONCLUSION: Elevated concentrations of agrichemicals in surface water in April-July coincided with higher risk of birth defects in live births with LMPs April-July. While a causal link between agrichemicals and birth defects cannot be proven from this study an association might provide clues to common factors shared by both variables.    FULL TEXT

Swan et al., 2003

Swan SH, Kruse RL, Liu F, Barr DB, Drobnis EZ, Redmon JB, Wang C, Brazil C, Overstreet JW, “Semen quality in relation to biomarkers of pesticide exposure,” Environmental Health Perspectives, 2003, 111:12.

ABSTRACT: We previously reported reduced sperm concentration and motility in fertile men in a U.S. agrarian area (Columbia, MO) relative to men from U.S. urban centers (Minneapolis, MN; Los Angeles, CA; New York, NY). In the present study we address the hypothesis that pesticides currently used in agriculture in the Midwest contributed to these differences in semen quality. We selected men in whom all semen parameters (concentration, percentage sperm with normal morphology, and percentage motile sperm) were low (cases) and men in whom all semen parameters were within normal limits (controls) within Missouri and Minnesota (sample sizes of 50 and 36, respectively) and measured metabolites of eight current-use pesticides in urine samples provided at the time of semen collection. All pesticide analyses were conducted blind with respect to center and case-control status. Pesticide metabolite levels were elevated in Missouri cases, compared with controls, for the herbicides alachlor and atrazine and for the insecticide diazinon [2-isopropoxy-4-methyl-pyrimidinol (IMPY)]; for Wilcoxon rank test, p = 0.0007, 0.012, and 0.0004 for alachlor, atrazine, and IMPY, respectively. Men from Missouri with high levels of alachlor or IMPY were significantly more likely to be cases than were men with low levels [odds ratios (ORs) = 30.0 and 16.7 for alachlor and IMPY, respectively], as were men with atrazine levels higher than the limit of detection (OR = 11.3). The herbicides 2,4-D (2,4-dichlorophenoxyacetic acid) and metolachlor were also associated with poor semen quality in some analyses, whereas acetochlor levels were lower in cases than in controls (p = 0.04). No significant associations were seen for any pesticides within Minnesota, where levels of agricultural pesticides were low, or for the insect repellent DEET (N,N-diethyl-m-toluamide) or the malathion metabolite malathion dicarboxylic acid. These associations between current-use pesticides and reduced semen quality suggest that agricultural chemicals may have contributed to the reduction in semen quality in fertile men from mid-Missouri we reported previously.  FULL TEXT

Schreinemachers, 2003

Schreinemachers DM, “Birth malformations and other adverse perinatal outcomes in four U.S. Wheat-producing states,” Environmental Health Perspectives, 2003, 111:9.

ABSTRACT: Chlorophenoxy herbicides are widely used in the United States and Western Europe for broadleaf weed control in grain farming and park maintenance. Most of the spring and durum wheat produced in the United States is grown in Minnesota, Montana, North Dakota, and South Dakota, with more than 85% of the acreage treated with chlorophenoxy herbicides such as 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid (MCPA). Rates of adverse birth outcomes in rural, agricultural counties of these states during 1995-1997 were studied by comparing counties with a high proportion of wheat acreage and those with a lower proportion. Information routinely collected and made available by federal agencies was used for this ecologic study. Significant increases in birth malformations were observed for the circulatory/respiratory category for combined sexes [odds ratio (OR) = 1.65; 95% confidence interval (CI), 1.07-2.55]. A stronger effect was observed for the subcategory, which excluded heart malformations (OR = 2.03; 95% CI, 1.14-3.59). In addition, infants conceived during April-June–the time of herbicide application–had an increased chance of being diagnosed with circulatory/respiratory (excluding heart) malformations compared with births conceived during other months of the year (OR = 1.75; 95% CI, 1.09-2.80). Musculoskeletal/integumental anomalies increased for combined sexes in the high-wheat counties (OR = 1.50; 95% CI, 1.06-2.12). Infant death from congenital anomalies significantly increased in high-wheat counties for males (OR = 2.66; 95% CI, 1.52-4.65) but not for females (OR = 0.48; 95% CI, 0.20-1.15). These results are especially of concern because of widespread use of chlorophenoxy herbicides.   FULL TEXT

Rusiecki et al., 2017

Rusiecki JA, Beane Freeman LE, Bonner MR, Alexander M, Chen L, Andreotti G, Barry KH, Moore LE, Byun HM, Kamel F, Alavanja M, Hoppin JA, Baccarelli A,”High pesticide exposure events and DNA methylation among pesticide applicators in the agricultural health study,” Environmental and Molecular Mutagenesis, 2017, 58:1, DOI: 10.1002/em.22067.

ABSTRACT: Pesticide exposure has been associated with acute and chronic adverse health effects. DNA methylation (DNAm) may mediate these effects. We evaluated the association between experiencing unusually high pesticide exposure events (HPEEs) and DNAm among pesticide applicators in the Agricultural Health Study (AHS), a prospective study of applicators from Iowa and North Carolina. DNA was extracted from whole blood from male AHS pesticide applicators (n = 695). Questionnaire data were used to ascertain the occurrence of HPEEs over the participant’s lifetime. Pyrosequencing was used to quantify DNAm in CDH1, GSTp1, and MGMT promoters, and in the repetitive element, LINE-1. Linear and robust regression analyses evaluated adjusted associations between HPEE and DNAm. Ever having an HPEE (n = 142; 24%) was associated with elevated DNAm in the GSTp1 promoter at CpG7 (chr11:67,351,134; P < 0.01) and for the mean across the CpGs measured in the GSTp1 promoter (P < 0.01). In stratified analyses, elevated GSTP1 promoter DNAm associated with HPEE was more pronounced among applicators >59 years and those with plasma folate levels ≤16.56 ng/mL (p-interaction <0.01); HPEE was associated with reduced MGMT promoter DNAm at CpG2 (chr10:131,265,803; P = 0.03), CpG3 (chr10:131,265,810; P = 0.05), and the mean across CpGs measured in the MGMT promoter (P = 0.03) among applicators >59 years and reduced LINE-1 DNAm (P = 0.05) among applicators with ≤16.56 ng/mL plasma folate. Non-specific HPEEs may contribute to increased DNAm in GSTp1, and in some groups, reduced DNAm in MGMT and LINE-1. The impacts of these alterations on disease development are unclear, but elevated GSTp1 promoter DNAm and subsequent gene inactivation has been consistently associated with prostate cancer.

Back To Top
Search