skip to Main Content

Bibliography Tag: pesticide exposure

Lu et al., 2018

Lu, L., Su, H., Liu, Q., & Li, F., “Development of a Luminescent Dinuclear Ir(III) Complex for Ultrasensitive Determination of Pesticides,” Analytical Chemistry, 2018, 90(19), 11716-11722. DOI: 10.1021/acs.analchem.8b03687.

ABSTRACT:

To improve the G-quadruplex specificity of Ir(III) complexes, a novel dinuclear Ir(III) complex (Din Ir(III)-1) was designed and synthesized through connecting two mononuclear Ir(III) complexes via a diphenyl bridge. Din Ir(III)-1 presents 3.4-4.1-fold enhancements for G-quadruplex relative to ssDNA and 4.3-5.3-fold enhancements relative to dsDNA in luminescence intensity, respectively, demonstrating an excellent G-quadruplex selectivity. Ascribed to its superior specificity to G-quadruplex, Din Ir(III)-1 was employed to construct a highly sensitive luminescent pesticides’ detection platform. The detection is based on acetylcholinesterase (AChE)-catalyzed hydrolysis product-induced DNA conformational transformation and subsequent terminal deoxynucleotidyl transferase (TdT) directed G-quadruplex formation. The assay exhibited a linear response between the emission intensity of Din Ir(III)-1 and the pesticide concentration in the range of 0.5-25 μg/L ( R2 = 0.994), and the limit of analyticdetection for the pesticide was as low as 0.37 μg/L when using aldicarb as the model pesticide. Moreover, this strategy demonstrates good applicability for the pesticide detection in real samples. It is also versatile for the detection of other organophosphate or carbamate pesticides, which have the inhibition ability toward AChE. Therefore, the proposed approach is scalable for practical application in food safety and environmental monitoring fields and will provide promising solutions for the assay of pesticide residues.

Lamure et al., 2019

Lamure, S., Carles, C., Aquereburu, Q., Quittet, P., Tchernonog, E., Paul, F., Jourdan, E., Waultier, A., Defez, C., Belhadj, I., Sanhes, L., Burcheri, S., Donadio, D., Exbrayat, C., Saad, A., Labourey, J. L., Baldi, I., Cartron, G., & Fabbro-Peray, P., “Association of Occupational Pesticide Exposure With Immunochemotherapy Response and Survival Among Patients With Diffuse Large B-Cell Lymphoma,” JAMA Network Open, 2019, 2(4), e192093. DOI: 10.1001/ jamanetworkopen.2019.2093.

ABSTRACT:

IMPORTANCE: Professional use of pesticides is a risk factor for non-Hodgkin lymphoma. The main biological mechanisms of pesticides and chemotherapy are genotoxicity and reactive oxygen species generation. Cellular adaptation among patients exposed to low doses of genotoxic and oxidative compounds might hinder chemotherapy efficiency in patients with lymphoma.

OBJECTIVE: To examine the association of occupational exposure to pesticides with immunochemotherapy response and survival among patients treated for diffuse large B-cell lymphoma.

DESIGN, SETTING, AND PARTICIPANTS: This retrospective cohort study assessed patients treated from July 1, 2010, to May 31, 2015, for diffuse large B-cell lymphoma, with a 2-year follow-up. The study took place at 6 university and nonuniversity hospitals in Languedoc-Roussillon, France. A total of 404 patients with newly diagnosed diffuse large B-cell lymphoma treated with anthracycline-based immunochemotherapy were included before the study began. Occupational history was reconstructed for 244 patients and analyzed with the PESTIPOP French job-exposure matrix to determine likelihood of occupational exposure to pesticides. Analysis of the data was performed from July 15, 2017, to July 15, 2018.

MAIN OUTCOMES AND MEASURES: Treatment failure (ie, partial response, stable disease, disease progression, or interruption for toxic effects) rate, 2-year event-free survival, and overall survival between exposed and nonexposed patients after adjustment for confounding factors.

RESULTS: A total of 244 patients (mean [SD] age, 61.3 [15.2] years; 153 [62.7%] male) had complete occupational data. Of these patients, 67 (27.4%) had occupational exposure to pesticides, with 38 exposed through agricultural occupations. Occupational exposure was not associated with clinical and biological characteristics at diagnosis. Occupationally exposed patients had a significantly higher treatment failure rate (22.4% vs 11.3%; P = .03; adjusted odds ratio [AOR] for confounding factors, 3.0; 95% CI, 1.3-6.9); this difference was higher among patients with exposing agricultural occupations compared with other patients (29.0% vs 11.7%; AOR, 5.1; 95% CI, 2.0-12.8). Two-year event-free survival was 70% in the occupationally exposed group vs 82% in the unexposed group (adjusted hazard ratio [AHR] for confounding factors, 2.2; 95% CI, 1.3-3.9). Among patients with exposing agricultural occupations compared with other patients, the difference was more pronounced (2-year event-free survival, 56% vs 83%; AHR, 3.5; 95% CI, 1.9-6.5). Similarly, 2-year overall survival was lower in the group of patients with exposing agricultural occupations compared with other patients (81% vs 92%; AHR, 3.9; 95% CI, 1.5-10.0).

CONCLUSIONS AND RELEVANCE: This retrospective study showed that agricultural occupational exposure to pesticides was associated with treatment failure, event-free survival, and overall survival among patients with diffuse large B-cell lymphoma. FULL TEXT

Kaufman et al., 2009

Kaufman, D. W., Anderson, T. E., & Issaragrisil, S., “Risk factors for leukemia in Thailand,” Annals of Hematology, 2009, 88(11), 1079-1088. DOI: 10.1007/s00277-009-0731-9.

ABSTRACT:

A case-control study of adult-onset leukemia was conducted in Bangkok, Thailand to explore the contribution of cellular telephone use and other factors to the etiology of the disease; 180 cases (87 acute myeloblastic leukemia, 40 acute lymphoblastic leukemia, 44 chronic myelogenous leukemia, eight chronic lymphocytic leukemia, one unclassified acute leukemia) were compared with 756 age- and sex-matched hospital controls. Data were obtained by interview; odds ratios (ORs) were estimated by unconditional logistic regression. There was no clear association with cellular telephone phone use, but durations were relatively short (median 24-26 months), and there was a suggestion that risk may be increased for those with certain usage practices (ORs, 1.8-3.0 with lower confidence intervals >1.0) and those who used GSM service (OR, 2.1; 95% confidence interval, 1.1-4.0). Myeloid leukemia (acute and chronic combined) was associated with benzene (OR, 3.9; 95% confidence interval, 1.3-11), a nonspecific group of other solvents (2.3; 1.1-4.9), occupational pesticides that were mostly unspecified (3.8; 2.1-7.1), and working with or near powerlines (4.3; 1.3-15). No associations were found for diagnostic X-rays, cigarette smoking, or other occupational exposures.

Karunanayake et al., 2008

Karunanayake, C. P., McDuffie, H. H., Dosman, J. A., Spinelli, J. J., & Pahwa, P., “Occupational exposures and non-Hodgkin’s lymphoma: Canadian case-control study,” Environ Health, 2008, 7, 44. DOI: 10.1186/1476-069X-7-44.

ABSTRACT:

BACKGROUND: The objective was to study the association between Non-Hodgkin’s Lymphoma (NHL) and occupational exposures related to long held occupations among males in six provinces of Canada.

METHODS: A population based case-control study was conducted from 1991 to 1994. Males with newly diagnosed NHL (ICD-10) were stratified by province of residence and age group. A total of 513 incident cases and 1506 population based controls were included in the analysis. Conditional logistic regression was conducted to fit statistical models.

RESULTS: Based on conditional logistic regression modeling, the following factors independently increased the risk of NHL: farmer and machinist as long held occupations; constant exposure to diesel exhaust fumes; constant exposure to ionizing radiation (radium); and personal history of another cancer. Men who had worked for 20 years or more as farmer and machinist were the most likely to develop NHL.

CONCLUSION: An increased risk of developing NHL is associated with the following: long held occupations of faer and machinist; exposure to diesel fumes; and exposure to ionizing radiation (radium). The risk of NHL increased with the duration of employment as a farmer or machinist.

FULL TEXT

ATSDR, 2019

Agency for Toxic Substances and Disease Registry, “Toxicological Profile for Glyphosate: Draft for Public Comment,” United States Department of Health and Human Services, 2019.

SUMMARY:

This toxicological profile is prepared in accordance with guidelines developed by the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA). The original guidelines were published in the Federal Register on April 17, 1987. Each profile will be revised and republished as necessary.

The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for these toxic substances described therein. Each peer-reviewed profile identifies and reviews the key literature that describes a substance’s toxicologic properties. Other pertinent literature is also presented, but is described in less detail than the key studies. The profile is not intended to be an exhaustive document; however, more comprehensive sources of specialty information are referenced.

The focus of the profiles is on health and toxicologic information; therefore, each toxicological profile begins with a relevance to public health discussion which would allow a public health professional to make a real-time determination of whether the presence of a particular substance in the environment poses a potential threat to human health. The adequacy of information to determine a substance’s health effects is described in a health effects summary. Data needs that are of significance to the protection of public health are identified by ATSDR and EPA.

Each profile includes the following:

(A) The examination, summary, and interpretation of available toxicologic information and epidemiologic evaluations on a toxic substance to ascertain the levels of significant human exposure for the substance and the associated acute, intermediate, and chronic health effects;
(B) A determination of whether adequate information on the health effects of each substance is available or in the process of development to determine the levels of exposure that present a significant risk to human health due to acute, intermediate, and chronic duration exposures; and
(C) Where appropriate, identification of toxicologic testing needed to identify the types or levels of exposure that may present significant risk of adverse health effects in humans.

FULL TEXT

Bai and Ogbourne, 2016

Bai, S. H., & Ogbourne, S. M., “Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination,” Environmental Science and Pollution Research, 2016, 23(19), 18988-19001. DOI: 10.1007/s11356-016-7425-3.

ABSTRACT:

Glyphosate has been the most widely used herbicide during the past three decades. The US Environmental Protection Agency (EPA) classifies glyphosate as ‘practically non-toxic and not an irritant’ under the acute toxicity classification system. This classification is based primarily on toxicity data and due to its unique mode of action via a biochemical pathway that only exists in a small number of organisms that utilise the shikimic acid pathway to produce amino acids, most of which are green plants. This classification is supported by the majority of scientific literature on the toxic effects of glyphosate. However, in 2005, the Food and Agriculture Organisation (FAO) reported that glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA), are of potential toxicological concern, mainly as a result of accumulation of residues in the food chain. The FAO further states that the dietary risk of glyphosate and AMPA is unlikely if the maximum daily intake of 1 mg kg(-1) body weight (bw) is not exceeded. Research has now established that glyphosate can persist in the environment, and therefore, assessments of the health risks associated with glyphosate are more complicated than suggested by acute toxicity data that relate primarily to accidental high-rate exposure. We have used recent literature to assess the possible risks associated with the presence of glyphosate residues in food and the environment. FULL TEXT

Ward, 2018

Ward, E. M., “Glyphosate Use and Cancer Incidence in the Agricultural Health Study: An Epidemiologic Perspective,” Journal of the National Cancer Institute, 2018, 110(5), 446-447. DOI: 10.1093/jnci/djx247.

ABSTRACT:

Not Available.  FULL TEXT

Milic et al., 2018

Milic, Mirta, Zunec, Suzana, Micek, Vedran, Kasuba, Vilena, Mikolic, Anja, Lovakovic, Blanka Tariba, Semren, Tanja Zivkovic, Pavicic, Ivan, Cermak, Ana Marija Marjanovic, Pizent, Alica, Vrdoljak, Ana Lucic, Valencia-Quintana, Rafael, Sanchez-Alarcon, Juana, & Zeljezic, Davor, “Oxidative stress, cholinesterase activity, and DNA damage in the liver, whole blood, and plasma of Wistar rats following a 28-day exposure to glyphosate,” Archives of Industrial Hygiene and Toxicology, 2018, 69(2), 154-168. DOI: 10.2478/aiht-2018-69-3114.

ABSTRACT:

In this 28 day-study, we evaluated the effects of herbicide glyphosate administered by gavage to Wistar rats at daily doses equivalent to 0.1 of the acceptable operator exposure level (AOEL), 0.5 of the consumer acceptable daily intake (ADI), 1.75 (corresponding to the chronic population-adjusted dose, cPAD), and 10 mg kg-1 body weight (bw) (corresponding to 100 times the AOEL). At the end of each treatment, the body and liver weights were measured and compared with their baseline values. DNA damage in leukocytes and liver tissue was estimated with the alkaline comet assay. Oxidative stress was evaluated using a battery of endpoints to establish lipid peroxidation via thiobarbituric reactive substances (TBARS) level, level of reactive oxygen species (ROS), glutathione (GSH) level, and the activity of glutathione peroxidase (GSH-Px). Total cholinesterase activity and the activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were also measured. The exposed animals gained less weight than control. Treatment resulted in significantly higher primary DNA damage in the liver cells and leukocytes. Glyphosate exposure significantly lowered TBARS in the liver of the AOEL, ADI, and cPAD groups, and in plasma in the AOEL and cPAD group. AChE was inhibited with all treatments, but the AOEL and ADI groups significantly differed from control. Total ChE and plasma/liver ROS/GSH levels did not significantly differ from control, except for the 35 % decrease in ChE in the AOEL and ADI groups and a significant drop in liver GSH in the cPAD and 100xAOEL groups. AOEL and ADI blood GSH-Px activity dropped significantly, but in the liver it significantly increased in the ADI, cPAD, and 100xAOEL groups vs. control. All these findings show that even exposure to low glyphosate levels can have serious adverse effects and points to a need to change the approach to risk assessment of low-level chronic/sub-chronic glyphosate exposure, where oxidative stress is not necessarily related to the genetic damage and AChE inhibition. FULL TEXT

Kongtip et al., 2017

Kongtip, Pornpimol, Nankongnab, Noppanun, Phupancharoensuk, Ratanavadee, Palarach, Chonlada, Sujirarat, Dusit, Sangprasert, Supha, Sermsuk, Malasod, Sawattrakool, Namthip, & Woskie, Susan Renee, “Glyphosate and Paraquat in Maternal and Fetal Serums in Thai Women,” Journal of Agromedicine, 2017, 22(3), 282-289. DOI: 10.1080/1059924x.2017.1319315.

ABSTRACT:

OBJECTIVES: This longitudinal study measured the glyphosate and paraquat concentrations found in maternal and umbilical cord serum in 82 pregnant women who gave birth in three provinces of Thailand.

METHODS: Through questionnaires and biological samples collected at childbirth, factors such as personal characteristics, family members occupation, agricultural activities, and herbicide use in agricultural work were evaluated as predictors of glyphosate and paraquat levels in the pregnant women. Statistical analysis used univariate and binary multiple logistic regression, where the outcome was the probability of exposure to paraquat or glyphosate above the limit of detection associated with occupation and household factors.

RESULTS: The glyphosate concentrations in the pregnant women’s serum at childbirth (median: 17.5, range: 0.2-189.1 ng/mL) were significantly higher (P < .007) than those in the umbilical cord serum (median: 0.2, range: 0.2-94.9 ng/mL). However, the paraquat concentrations in the serum of the pregnant women at childbirth (83% </=limit of detection [LOD], with maximum of 58.3 ng/mL) were similar to those in the umbilical cord serum (80% <LOD, with maximum of 47.6 ng/mL). Women with glyphosate levels >LOD in serum at childbirth were 11.9 times more likely to report work as an agriculturist (P < .001), 3.7 times more likely to live near agricultural areas (P = .006), and 5.9 times more likely to have a family member who worked in agriculture (P < .001). The only factors affecting paraquat exposures in pregnant women at childbirth were reporting the agricultural activity of digging in farm soil and working in the agricultural fields in the third trimester of pregnancy.

CONCLUSIONS: These results show that pregnant women who work in agriculture or live in families that work in agriculture have higher exposures to the herbicides glyphosate and paraquat. The potential for long-term health impacts of these prenatal exposures to children should be evaluated, and greater regulation of the sale and use of herbicides should be considered in Thailand. FULL TEXT

Klarich et al., 2017

Klarich, Kathryn L., Pflug, Nicholas C., DeWald, Eden M., Hladik, Michelle L., Kolpin, Dana W., Cwiertny, David M., & LeFevre, Gregory H., “Occurrence of Neonicotinoid Insecticides in Finished Drinking Water and Fate during Drinking Water Treatment,” Environmental Science & Technology Letters, 2017, 4(5), 168-173. DOI: 10.1021/acs.estlett.7b00081.

ABSTRACT:

Neonicotinoid insecticides are widespread in surface waters across the agriculturally intensive Midwestern United States. We report for the first time the presence of three neonicotinoids in finished drinking water and demonstrate their general persistence during conventional water treatment. Periodic tap water grab samples were collected at the University of Iowa over 7 weeks in 2016 (May−July) after maize/soy planting. Clothianidin, imidacloprid, and thiamethoxam were ubiquitously detected in finished water samples at concentrations ranging from 0.24 to 57.3 ng/L. Samples collected along the University of Iowa treatment train indicate no apparent removal of clothianidin or imidacloprid, with modest thiamethoxam removal (∼50%). In contrast, the concentrations of all neonicotinoids were substantially lower in the Iowa City treatment facility finished water using granular activated carbon (GAC) filtration. Batch experiments investigated potential losses. Thiamethoxam losses are due to base-catalyzed hydrolysis under high-pH conditions during lime softening. GAC rapidly and nearly completely removed all three neonicotinoids. Clothianidin is susceptible to reaction with free chlorine and may undergo at least partial transformation during chlorination. Our work provides new insights into the persistence of neonicotinoids and their potential for transformation during water treatment and distribution, while also identifying GAC as a potentially effective management tool for decreasing neonicotinoid concentrations in finished drinking water.

Back To Top
Search