Rice et al., 2018
Rice, J.R., Dunlap, P., Ramaiahgari, S., Ferguson, S., Smith-Roe, S.L., & DeVito, M., “Poster: Effects of Glyphosate and its Formulations on Markers of Oxidative Stress and Cell Viability in HepaRG and HaCaT Cell Lines, 2018, Presented at the Society of Toxicology Conference.
ABSTRACT:
Glyphosate (GLY) is the active ingredient found in herbicide formulations worldwide. GLY is toxic to plants by disrupting the shikimate amino acid synthesis pathway. The present day intensive use of GLY began with the introduction of GLY-resistant crops in the late 1990s. Although GLY has a low toxicity profile for humans and mammals, conflicting reports exist as to whether it poses a cancer risk for humans. The USEPA and European regulatory agencies have described GLY as unlikely to pose a carcinogenic hazard to humans. However, the International Agency for Research on Cancer (IARC) has classified GLY as “probably carcinogenic to humans”.
IARC proposed that oxidative stress may be a mechanism by which GLY could potentially cause cancer. To address this hypothesis, we are testing GLY in human cell lines using several assays that detect reactive oxygen species (ROS) or their effects. Studies were designed to compare the point of departure for the effects of GLY on cell viability (CellTiter-Glo assay) to the point of departure for effects in oxidative damage assays. We also directly compared the effects of GLY versus GLY salts, as well as GLY and adjunct active ingredients versus formulations. We used a high content, 384-well plate approach to generate extensive dose-response curves for multiple comparisons.
Assays (CellTiter-Glo, ROS-Glo, and JC10) were performed after 1 or 24 h of exposure to test articles. GLY and GLY isopropylamine decreased cell viability and altered mitochondrial membrane potential (MMP) at ≥ 10 mM, but did not affect ROS production. The formulations were more potent than GLY alone. Cell viability and MMP were significantly altered at 1 h by the formulations. Based on GLY concentrations, these mixtures were over 1000x more potent than GLY alone. In contrast to the robust induction of ROS by positive controls at both time points, formulations had no effect on ROS at 1 h and showed a marginal increase in ROS at 24 h. These data suggest that GLY does not induce oxidative stress. In addition, the formulations marginally increased oxidative stress only after significant loss of cell viability. The results were very similar for both HepaRG and HaCaT cell lines, suggesting that xenobiotic metabolism has little impact on cell viability and oxidative stress induced by these chemicals. FULL TEXT