Bibliography Tag: neonicotinoids
Schlappi et al., 2020
Schlappi, D., Kettler, N., Straub, L., Glauser, G., & Neumann, P.; “Long-term effects of neonicotinoid insecticides on ants;” Communications Biology, 2020, 3(1), 335; DOI: 10.1038/s42003-020-1066-2.
ABSTRACT:
The widespread prophylactic usage of neonicotinoid insecticides has a clear impact on non-target organisms. However, the possible effects of long-term exposure on soil-dwelling organisms are still poorly understood especially for social insects with long-living queens. Here, we show that effects of chronic exposure to the neonicotinoid thiamethoxam on black garden ant colonies, Lasius niger, become visible before the second overwintering. Queens and workers differed in the residue-ratio of thiamethoxam to its metabolite clothianidin, suggesting that queens may have a superior detoxification system. Even though thiamethoxam did not affect queen mortality, neonicotinoid-exposed colonies showed a reduced number of workers and larvae indicating a trade-off between detoxification and fertility. Since colony size is a key for fitness, our data suggest long-term impacts of neonicotinoids on these organisms. This should be accounted for in future environmental and ecological risk assessments of neonicotinoid applications to prevent irreparable damages to ecosystems. FULL TEXT
Pisa et al., 2015
Pisa, L. W., Amaral-Rogers, V., Belzunces, L. P., Bonmatin, J. M., Downs, C. A., Goulson, D., Kreutzweiser, D. P., Krupke, C., Liess, M., McField, M., Morrissey, C. A., Noome, D. A., Settele, J., Simon-Delso, N., Stark, J. D., Van der Sluijs, J. P., Van Dyck, H., & Wiemers, M.; “Effects of neonicotinoids and fipronil on non-target invertebrates;” Environmental Science and Pollution Research International, 2015, 22(1), 68-102; DOI: 10.1007/s11356-014-3471-x.
ABSTRACT:
We assessed the state of knowledge regarding the effects of large-scale pollution with neonicotinoid insecticides and fipronil on non-target invertebrate species of terrestrial, freshwater and marine environments. A large section of the assessment is dedicated to the state of knowledge on sublethal effects on honeybees (Apis mellifera) because this important pollinator is the most studied non-target invertebrate species. Lepidoptera (butterflies and moths), Lumbricidae (earthworms), Apoidae sensu lato (bumblebees, solitary bees) and the section “other invertebrates” review available studies on the other terrestrial species. The sections on freshwater and marine species are rather short as little is known so far about the impact of neonicotinoid insecticides and fipronil on the diverse invertebrate fauna of these widely exposed habitats. For terrestrial and aquatic invertebrate species, the known effects of neonicotinoid pesticides and fipronil are described ranging from organismal toxicology and behavioural effects to population-level effects. For earthworms, freshwater and marine species, the relation of findings to regulatory risk assessment is described. Neonicotinoid insecticides exhibit very high toxicity to a wide range of invertebrates, particularly insects, and field-realistic exposure is likely to result in both lethal and a broad range of important sublethal impacts. There is a major knowledge gap regarding impacts on the grand majority of invertebrates, many of which perform essential roles enabling healthy ecosystem functioning. The data on the few non-target species on which field tests have been performed are limited by major flaws in the outdated test protocols. Despite large knowledge gaps and uncertainties, enough knowledge exists to conclude that existing levels of pollution with neonicotinoids and fipronil resulting from presently authorized uses frequently exceed the lowest observed adverse effect concentrations and are thus likely to have large-scale and wide ranging negative biological and ecological impacts on a wide range of non-target invertebrates in terrestrial, aquatic, marine and benthic habitats. FULL TEXT
Epstein and Zhang, 2014
Epstein, Lynn, & Zhang, Minghua. (2014). The Impact of Integrated Pest Management Programs on Pesticide Use in California, USA. In R. Peshin & D. Pimentel (Eds.), Integrated Pest Management (pp. 173-200): Springer.
ABSTRACT:
Integrated Pest Management (IPM) is often promoted to farmers as a method that can provide the most economical, sustained disease and pest control, but promoted to the public as a method to reduce agricultural pesticide use. California has a public infrastructure for supporting IPM research and implementation, largely through the University of California IPM program. California’s Department of Pesticide Regulation’s Pesticide Use Reports provide a system to track pesticide use state-wide. In practice, IPM in California is extremely pesticide-dependent, particularly in weed control and in agricultural production systems that rely on soil fumigation, such as strawberries. During our study period between 1993 and 2010, California had a decrease in use of 88 % of the highly-used pesticides listed for regulatory concern for human health. However, most of these pesticides were replaced with other chemicals rather than with non-chemical methods. We feature several case studies that illustrate key issues in California IPM: the limited progress in meeting Montreal Protocol guidelines for methyl bromide phase-out due to critical use exemptions for strawberry producers; a successful IPM program to decrease use of dormant-season organophosphates that are important water pollutants; the increase in use of neonicotinoid insecticides, which might have a role in the current bee colony collapse disorder; and the limited use of all of the commercialized microbial biocontrol agents except for Bacillus thuringiensis. FULL TEXT
Baker et al., 2019
Baker, S. E., Serafim, A. B., Morales-Agudelo, P., Vidal, M., Calafat, A. M., & Ospina, M.; “Quantification of DEET and neonicotinoid pesticide biomarkers in human urine by online solid-phase extraction high-performance liquid chromatography-tandem mass spectrometry;” Analytical and Bioanalytical Chemistry, 2019, 411(3), 669-678; DOI: 10.1007/s00216-018-1481-0.
ABSTRACT:
Neonicotinoid insecticides are widely used replacements for organophosphate and carbamate insecticides, but the extent of human exposure is largely unknown. On the other hand, based on urinary concentrations of DEET metabolites, human exposure to N,N-diethyl-m-toluamide (DEET) appears to be widespread. We developed a fast online solid-phase extraction high-performance liquid chromatography-isotope dilution tandem mass spectrometry (HPLC-MS/MS) method to measure in 200 muL of human urine the concentrations of six neonicotinoid biomarkers (acetamiprid, N-desmethyl-acetamiprid, clothianidin, imidacloprid, 5-hydroxy-imidacloprid, thiacloprid), and two DEET biomarkers (3-diethyl-carbamoyl benzoic acid, 3-ethyl-carbamoyl benzoic acid). Limits of detection ranged from 0.01 to 0.1 mug/L, depending on the biomarker. Accuracy ranged from 91 to 116% and precision ranged from 3.7 to 10 %RSD. The presented method can be used to increase our understanding of exposure to neonicotinoid insecticides and DEET, and to evaluate the potential health effects from such exposures. FULL TEXT
Abdel-Halim and Osman, 2020
Abdel-Halim, K. Y., & Osman, S. R.; “Cytotoxicity and Oxidative Stress Responses of Imidacloprid and Glyphosate in Human Prostate Epithelial WPM-Y.1 Cell Line;” Journal of Toxicology, 2020, 2020, 4364650; DOI: 10.1155/2020/4364650.
ABSTRACT:
Insecticide imidacloprid and herbicide glyphosate have a broad spectrum of applicable use in the agricultural sector of Egypt. Their ability to induce in vitro cytotoxic and oxidative stress on normal human cells (prostate epithelial WPM-Y.1 cell line) was evaluated with the methyl tetrazolium test (MTT) and histopathological investigation. Cell viability was evaluated with an MTT test for 24 h. The median inhibition concentration (IC50) values were 0.023 and 0.025 mM for imidacloprid and glyphosate, respectively. Sublethal concentrations: 1/10 and 1/50 of IC50 and IC50 levels significantly induced an increase in the lactate dehydrogenase (LDH) activity and malondialdehyde (MDA) level compared with the untreated cells. Rapid decrease in the glutathione (GSH) content and glutathione-S-transferase (GST) activity was induced. Significant increases were recorded in activities of catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR), respectively, compared with the control group. Transmission electron microscopic (TEM) investigation showed significant defects in the cells following pesticide treatments for 24 h. Therefore, it is concluded that imidacloprid and glyphosate are very toxic in vitro assays and able to induce apoptotic effects as well as oxidative stress. So, these findings provide a scenario of multibiomarkers to achieve the imposed risks of pesticides at low doses. FULL TEXT
Berens et al., 2020
Berens, Matthew B., Capel, Paul D., & Arnold, William A.; “Neonicotinoid Insecticides in Surface Water, Groundwater, and Wastewater across Land Use Gradients and Potential Effects;” Environmental Toxicology and Chemistry, 2020, In Press; DOI: 10.1002/etc.4959.
ABSTRACT:
Neonicotinoid insecticides cause adverse effects on non-target organisms, but more information about their occurrence in surface and groundwater is needed across a range of land use. Sixty-five sites in Minnesota U.S., representing rivers, streams, lakes, groundwater, and treated wastewater, were monitored via collection of 157 water samples to determine variability in spatiotemporal neonicotinoid concentrations. The data were used to assess relations to land use, hydrogeologic condition, and potential effects on aquatic life. Results showed total neonicotinoid concentrations were highest in agricultural watersheds (median=12 ng/L) followed by urban (2.9 ng/L) and undeveloped watersheds (1.9 ng/L). Clothianidin was most frequently detected in agricultural areas (detection frequency = 100%) and imidacloprid most often in urban waters (detection frequency = 97%). The seasonal trend of neonicotinoid concentrations in rivers, streams, and lakes showed that their highest concentrations coincided with spring planting and elevated streamflow. Consistently low neonicotinoid concentrations were found in shallow groundwater in agricultural regions (<1.2-16 ng/L, median = 1.4 ng/L). Treated municipal wastewater had the highest concentrations across all hydrologic compartments (12-48 ng/L, median = 19 ng/L), but neonicotinoid loads from rivers and streams (median = 4100 mg/d) were greater than in treated wastewater (700 mg/d). No samples exceeded acute aquatic-life benchmarks for individual neonicotinoids, whereas 10% of samples exceeded a chronic benchmark for neonicotinoid mixtures. Although 62% of samples contained two or more neonicotinoids, the observed concentrations suggest there were low acute and potential chronic risks to aquatic life. This the first study of its size in Minnesota and is critical to better understanding the drivers of widescale environmental contamination by neonicotinoids where urban, agricultural, and undeveloped lands are present. FULL TEXT
Smith et al., 2020
Smith, Dylan B., Arce, Andres N., Ramos Rodrigues, Ana, Bischoff, Philipp H., Burris, Daisy, Ahmed, Farah, & Gill, Richard J.; “Insecticide exposure during brood or early-adult development reduces brain growth and impairs adult learning in bumblebees;” Proceedings of the Royal Society B: Biological Sciences, 2020, 287(1922); DOI: 10.1098/rspb.2019.2442.
ABSTRACT:
For social bees, an understudied step in evaluating pesticide risk is how contaminated food entering colonies affects residing offspring development and maturation. For instance, neurotoxic insecticide compounds in food could affect central nervous system development predisposing individuals to become poorer task performers later-in-life. Studying bumblebee colonies provisioned with neonicotinoid spiked nectar substitute, we measured brain volume and learning behaviour of 3 or 12-day old adults that had experienced in-hive exposure during brood and/or early-stage adult development. Micro-computed tomography scanning and segmentation of multiple brain neuropils showed exposure during either of the developmental stages caused reduced mushroom body calycal growth relative to unexposed workers. Associated with this was a lower probability of responding to a sucrose reward and lower learning performance in an olfactory conditioning test. While calycal volume of control workers positively correlated with learning score, this relationship was absent for exposed workers indicating neuropil functional impairment. Comparison of 3- and 12-day adults exposed during brood development showed a similar degree of reduced calycal volume and impaired behaviour highlighting lasting and irrecoverable effects from exposure despite no adult exposure. Our findings help explain how the onset of pesticide exposure to whole colonies can lead to lag-effects on growth and resultant dysfunction. FULL TEXT
Eng et al., 2019
Eng, M. L., Stutchbury, B. J. M., & Morrissey, C. A.; “A neonicotinoid insecticide reduces fueling and delays migration in songbirds;” Science, 2019, 365(6458), 1177-1180; DOI: 10.1126/science.aaw9419.
ABSTRACT:
Neonicotinoids are neurotoxic insecticides widely used as seed treatments, but little is known of their effects on migrating birds that forage in agricultural areas. We tracked the migratory movements of imidacloprid-exposed songbirds at a landscape scale using a combination of experimental dosing and automated radio telemetry. Ingestion of field-realistic quantities of imidacloprid (1.2 or 3.9 milligrams per kilogram body mass) by white-crowned sparrows (Zonotrichia leucophrys) during migratory stopover caused a rapid reduction in food consumption, mass, and fat and significantly affected their probability of departure. Birds in the high-dose treatment stayed a median of 3.5 days longer at the site of capture after exposure as compared with controls, likely to regain fuel stores or recover from intoxication. Migration delays can carry over to affect survival and reproduction; thus, these results confirm a link between sublethal pesticide exposure and adverse outcomes for migratory bird populations. FULL TEXT
DiBartolomeis et al., 2019
DiBartolomeis, M., Kegley, S., Mineau, P., Radford, R., & Klein, K.; “An assessment of acute insecticide toxicity loading (AITL) of chemical pesticides used on agricultural land in the United States;” Plos One, 2019, 14(8), e0220029; DOI: 10.1371/journal.pone.0220029.
ABSTRACT:
We present a method for calculating the Acute Insecticide Toxicity Loading (AITL) on US agricultural lands and surrounding areas and an assessment of the changes in AITL from 1992 through 2014. The AITL method accounts for the total mass of insecticides used in the US, acute toxicity to insects using honey bee contact and oral LD50 as reference values for arthropod toxicity, and the environmental persistence of the pesticides. This screening analysis shows that the types of synthetic insecticides applied to agricultural lands have fundamentally shifted over the last two decades from predominantly organophosphorus and N-methyl carbamate pesticides to a mix dominated by neonicotinoids and pyrethroids. The neonicotinoids are generally applied to US agricultural land at lower application rates per acre; however, they are considerably more toxic to insects and generally persist longer in the environment. We found a 48- and 4-fold increase in AITL from 1992 to 2014 for oral and contact toxicity, respectively. Neonicotinoids are primarily responsible for this increase, representing between 61 to nearly 99 percent of the total toxicity loading in 2014. The crops most responsible for the increase in AITL are corn and soybeans, with particularly large increases in relative soybean contributions to AITL between 2010 and 2014. Oral exposures are of potentially greater concern because of the relatively higher toxicity (low LD50s) and greater likelihood of exposure from residues in pollen, nectar, guttation water, and other environmental media. Using AITL to assess oral toxicity by class of pesticide, the neonicotinoids accounted for nearly 92 percent of total AITL from 1992 to 2014. Chlorpyrifos, the fifth most widely used insecticide during this time contributed just 1.4 percent of total AITL based on oral LD50s. Although we use some simplifying assumptions, our screening analysis demonstrates an increase in pesticide toxicity loading over the past 26 years, which potentially threatens the health of honey bees and other pollinators and may contribute to declines in beneficial insect populations as well as insectivorous birds and other insect consumers. FULL TEXT