skip to Main Content

Bibliography Tag: meta analysis

Kezic and Nielsen, 2009

Kezic, S., & Nielsen, J. B.; “Absorption of chemicals through compromised skin;” International Archives of Occupational and Environmental Health, 2009, 82(6), 677-688; DOI: 10.1007/s00420-009-0405-x.

ABSTRACT:

Skin is an important route of entry for many chemicals in the work place. To assess systemic uptake of a chemical in contact with the skin, quantitative information on dermal absorption rates of chemicals is needed. Absorption rates are mainly obtained from studies performed with intact, healthy skin. At the work place, however, a compromised skin barrier, although not necessarily visible is common, e.g. due to physical and chemical damage. As reviewed in this article, there are several lines of evidence that reduced integrity of the skin barrier may increase dermal absorption of chemicals in the occupational setting. An impaired skin barrier might lead not only to enhanced absorption of a specific chemical, but also to entrance of larger molecules such as proteins and nanoparticles which normally are not able to penetrate intact skin. In addition to environmental influences, there is increasing evidence that some individuals have an intrinsically affected skin barrier which will facilitate entrance of chemicals into and through the skin making these persons more susceptible for local as well for systemic toxicity. This review addresses mechanisms of barrier alteration caused by the most common skin-damaging factors in the occupational settings and the consequences for dermal absorption of chemicals. Furthermore, this review emphasizes the importance of maintained barrier properties of the skin. FULL TEXT

Rueda-Ruzafa et al., 2019

Rueda-Ruzafa, L., Cruz, F., Roman, P., & Cardona, D.; “Gut microbiota and neurological effects of glyphosate;” NeuroToxicology, 2019, 75, 1-8; DOI: 10.1016/j.neuro.2019.08.006.

ABSTRACT:

There are currently various concerns regarding certain environmental toxins and the possible impact they can have on developmental diseases. Glyphosate (Gly) is the most utilised herbicide in agriculture, although its widespread use is generating controversy in the scientific world because of its probable carcinogenic effect on human cells. Gly performs as an inhibitor of 5-enolpyruvylshikimate-3-phospate synthase (EPSP synthase), not only in plants, but also in bacteria. An inhibiting effect on EPSP synthase from intestinal microbiota has been reported, affecting mainly beneficial bacteria. To the contrary, Clostridium spp. and Salmonella strains are shown to be resistant to Gly. Consequently, researchers have suggested that Gly can cause dysbiosis, a phenomenon which is characterised by an imbalance between beneficial and pathogenic microorganisms. The overgrowth of bacteria such as clostridia generates high levels of noxious metabolites in the brain, which can contribute to the development of neurological deviations. This work reviews the impact of Gly-induced intestinal dysbiosis on the central nervous system, focusing on emotional, neurological and neurodegenerative disorders. A wide variety of factors were investigated in relation to brain-related changes, including highlighting genetic abnormalities, pregnancy-associated problems, diet, infections, vaccines and heavy metals. However, more studies are required to determine the implication of the most internationally used herbicide, Gly, in behavioural disorders. FULL TEXT

Klingelhöfer et al., 2020

Klingelhöfer, D., Braun, M., Brüggmann, D., & Groneberg, D. A.; “Glyphosate: How do ongoing controversies, market characteristics, and funding influence the global research landscape?;” Science of The Total Environment, 2020, 765, 144271; DOI: 10.1016/j.scitotenv.2020.144271.

ABSTRACT:

Glyphosate is a systemic broad-spectrum herbicide that is by now the most extensively used herbicide in the world and has been the source for a still heated controversy about its harmful effects on human health and the environment. The different weighting of scientific studies has led to different attitudes in most countries towards appropriate handling and their regulatory authorities. Therefore, an in-depth analysis of the global research landscape on glyphosate is needed to provide the background for further decisions regarding appropriate and careful use, taking into account the different regional conditions. The present study is based on established bibliometric methodological tools and is extended by glyphosate-specific parameters. Chronological and geographical patterns are revealed to determine the incentives and intentions of international scientific efforts. Research output grew in line with the exponential growth in consumption, with the field of research becoming increasingly multidisciplinary and shifting towards environmental and medical disciplines. The countries with the highest herbicide use are also the leading countries in glyphosate research: USA, Brazil, Canada, China and Argentina. The link between publication output and market parameters is as evident as the association with national grants. The research interest of the manufacturing company Monsanto could be shown as the second largest publishing institution behind the US Department of Agriculture, which interest is underscored by its position among the otherwise government-funded organizations. Developing countries are generally underrepresented in glyphosate research, although the use of glyphosate is increasing dramatically. In conclusion, the incentives are strongly linked to market and agricultural interests, with the scientific infrastructure of the countries forming the basis for financing and conducting research. The existing international network is important and needs to be expanded and strengthened by including the lower economies in order to take into account all regional and social needs and aspects of glyphosate use.

Yusa et al., 2015

Yusa, V., Millet, M., Coscolla, C., & Roca, M.; “Analytical methods for human biomonitoring of pesticides. A review;” Analytica Chimica Acta, 2015, 891, 15-31; DOI: 10.1016/j.aca.2015.05.032.

ABSTRACT:

Biomonitoring of both currently-used and banned-persistent pesticides is a very useful tool for assessing human exposure to these chemicals. In this review, we present current approaches and recent advances in the analytical methods for determining the biomarkers of exposure to pesticides in the most commonly used specimens, such as blood, urine, and breast milk, and in emerging non-invasive matrices such as hair and meconium. We critically discuss the main applications for sample treatment, and the instrumental techniques currently used to determine the most relevant pesticide biomarkers. We finally look at the future trends in this field. FULL TEXT

Gillezeau et al., 2020

Gillezeau, C., Lieberman-Cribbin, W., & Taioli, E.; “Update on human exposure to glyphosate, with a complete review of exposure in children;” Environmental Health, 2020, 19(1), 115; DOI: 10.1186/s12940-020-00673-z.

ABSTRACT:

BACKGROUND: Glyphosate, a commonly used pesticide, has been the topic of much debate. The effects of exposure to glyphosate remains a contentious topic. This paper provides an update to the existing literature regarding levels of glyphosate exposure in occupationally exposed individuals and focuses or reviewing all the available published literature regarding glyphosate exposure levels in children.

METHODS: A literature review was conducted and any articles reporting quantifiable exposure levels in humans published since January 2019 (the last published review on glyphosate exposure) were reviewed and data extracted and standardized.

RESULTS: A total of five new studies reporting exposure levels in humans were found including 578 subjects. Two of these studies focused on occupationally exposed individuals while three of them focused on glyphosate exposure levels in children. Given the sparse nature of the new data, previously identified studies on exposure to glyphosate in children were included in our analysis of children’s exposure. The lowest average level of glyphosate exposure reported was 0.28 μg/L and the highest average exposure levels reported was 4.04 μg/L.

CONCLUSION: The literature on glyphosate exposure levels, especially in children, remains limited. Without more data collected in a standardized way, parsing out the potential relationship between glyphosate exposure and disease will not be possible. FULL TEXT

Pellizzari et al., 2019

Pellizzari, E. D., Woodruff, T. J., Boyles, R. R., Kannan, K., Beamer, P. I., Buckley, J. P., Wang, A., Zhu, Y., & Bennett, D. H.; “Identifying and Prioritizing Chemicals with Uncertain Burden of Exposure: Opportunities for Biomonitoring and Health-Related Research;” Environmental Health Perspectives, 2019, 127(12), 126001; DOI: 10.1289/EHP5133.

ABSTRACT:

BACKGROUND: The National Institutes of Health’s Environmental influences on Child Health Outcomes (ECHO) initiative aims to understand the impact of environmental factors on childhood disease. Over 40,000 chemicals are approved for commercial use. The challenge is to prioritize chemicals for biomonitoring that may present health risk concerns.

OBJECTIVES: Our aim was to prioritize chemicals that may elicit child health effects of interest to ECHO but that have not been biomonitored nationwide and to identify gaps needing additional research.

METHODS: We searched databases and the literature for chemicals in environmental media and in consumer products that were potentially toxic. We selected chemicals that were not measured in the National Health and Nutrition Examination Survey. From over 700 chemicals, we chose 155 chemicals and created eight chemical panels. For each chemical, we compiled biomonitoring and toxicity data, U.S. Environmental Protection Agency exposure predictions, and annual production usage. We also applied predictive modeling to estimate toxicity. Using these data, we recommended chemicals either for biomonitoring, to be deferred pending additional data, or as low priority for biomonitoring.

RESULTS: For the 155 chemicals, 97 were measured in food or water, 67 in air or house dust, and 52 in biospecimens. We found in vivo endocrine, developmental, reproductive, and neurotoxic effects for 61, 74, 47, and 32 chemicals, respectively. Eighty-six had data from high-throughput in vitro assays. Positive results for endocrine, developmental, neurotoxicity, and obesity were observed for 32, 11, 35, and 60 chemicals, respectively. Predictive modeling results suggested 90% are toxicants. Biomarkers were reported for 76 chemicals. Thirty-six were recommended for biomonitoring, 108 deferred pending additional research, and 11 as low priority for biomonitoring.

DISCUSSION: The 108 deferred chemicals included those lacking biomonitoring methods or toxicity data, representing an opportunity for future research. Our evaluation was, in general, limited by the large number of unmeasured or untested chemicals.  FULL TEXT

Buckley et al., 2020

Buckley, J. P., Barrett, E. S., Beamer, P. I., Bennett, D. H., Bloom, M. S., Fennell, T. R., Fry, R. C., Funk, W. E., Hamra, G. B., Hecht, S. S., Kannan, K., Iyer, R., Karagas, M. R., Lyall, K., Parsons, P. J., Pellizzari, E. D., Signes-Pastor, A. J., Starling, A. P., Wang, A., Watkins, D. J., Zhang, M., Woodruff, T. J., & program collaborators for, Echo; “Opportunities for evaluating chemical exposures and child health in the United States: the Environmental influences on Child Health Outcomes (ECHO) Program;” Journal of exposure science & environmental epidemiology, 2020, 30(3), 397-419; DOI: 10.1038/s41370-020-0211-9.

ABSTRACT:

The Environmental Influences on Child Health Outcomes (ECHO) Program will evaluate environmental factors affecting children’s health (perinatal, neurodevelopmental, obesity, respiratory, and positive health outcomes) by pooling cohorts composed of >50,000 children in the largest US study of its kind. Our objective was to identify opportunities for studying chemicals and child health using existing or future ECHO chemical exposure data. We described chemical-related information collected by ECHO cohorts and reviewed ECHO-relevant literature on exposure routes, sources, and environmental and human monitoring. Fifty-six ECHO cohorts have existing or planned chemical biomonitoring data for mothers or children. Environmental phenols/parabens, phthalates, metals/metalloids, and tobacco biomarkers are each being measured by ≥15 cohorts, predominantly during pregnancy and childhood, indicating ample opportunities to study child health outcomes. Cohorts are collecting questionnaire data on multiple exposure sources and conducting environmental monitoring including air, dust, and water sample collection that could be used for exposure assessment studies. To supplement existing chemical data, we recommend biomonitoring of emerging chemicals, nontargeted analysis to identify novel chemicals, and expanded measurement of chemicals in alternative biological matrices and dust samples. ECHO’s rich data and samples represent an unprecedented opportunity to accelerate environmental chemical research to improve the health of US children. FULL TEXT

Connolly et al., 2020

Connolly, A., Coggins, M. A., & Koch, H. M.; “Human Biomonitoring of Glyphosate Exposures: State-of-the-Art and Future Research Challenges;” Toxics, 2020, 8(3); DOI: 10.3390/toxics8030060. https://www.ncbi.nlm.nih.gov/pubmed/32824707.

ABSTRACT:

Glyphosate continues to attract controversial debate following the International Agency for Research on Cancer carcinogenicity classification in 2015. Despite its ubiquitous presence in our environment, there remains a dearth of data on human exposure to both glyphosate and its main biodegradation product aminomethylphosphonic (AMPA). Herein, we reviewed and compared results from 21 studies that use human biomonitoring (HBM) to measure urinary glyphosate and AMPA. Elucidation of the level and range of exposure was complicated by differences in sampling strategy, analytical methods, and data presentation. Exposure data is required to enable a more robust regulatory risk assessment, and these studies included higher occupational exposures, environmental exposures, and vulnerable groups such as children. There was also considerable uncertainty regarding the absorption and excretion pattern of glyphosate and AMPA in humans. This information is required to back-calculate exposure doses from urinary levels and thus, compared with health-based guidance values. Back-calculations based on animal-derived excretion rates suggested that there were no health concerns in relation to glyphosate exposure (when compared with EFSA acceptable daily intake (ADI)). However, recent human metabolism data has reported as low as a 1% urinary excretion rate of glyphosate. Human exposures extrapolated from urinary glyphosate concentrations found that upper-bound levels may be much closer to the ADI than previously reported. FULL TEXT

Reeves et al., 2019

Reeves, W. R., McGuire, M. K., Stokes, M., & Vicini, J. L.; “Assessing the Safety of Pesticides in Food: How Current Regulations Protect Human Health;” Advances in Nutrition, 2019, 10(1), 80-88; DOI: 10.1093/advances/nmy061.

ABSTRACT:

Understanding the magnitude and impact of dietary pesticide exposures is a concern for some consumers. However, the ability of consumers to obtain and understand state-of-the-science information about how pesticides are regulated and how dietary exposure limits are set can be limited by the complicated nature of the regulations coupled with an abundance of sources seeking to cast doubt on the reliability of those regulations. Indeed, these regulations are sometimes not well understood within health care professions. As such, the objective of this review is to provide a historical perspective as to how modern pesticides were developed, current trends in pesticide use and regulation, and measures taken to reduce the risk of pesticide use to the consumer. Throughout the review, we provide specific examples for some of the concepts as they apply to glyphosate-a pesticide commonly used by both farmers and consumers. In addition, we describe current efforts to monitor pesticide use. We are confident that this succinct, yet thorough, review of this topic will be of interest to myriad researchers, public health experts, and health practitioners as they help communicate information about making healthful and sustainable food choices to the public. FULL TEXT

Brehm and Flaws, 2019

Brehm, E., & Flaws, J. A.; “Transgenerational Effects of Endocrine-Disrupting Chemicals on Male and Female Reproduction;” Endocrinology, 2019, 160(6), 1421-1435; DOI: 10.1210/en.2019-00034.

ABSTRACT:

Endocrine-disrupting chemicals are known to interfere with normal reproductive function and hormone signaling. Phthalates, bisphenol A, pesticides, and environmental contaminants such as polychlorinated biphenyls and dioxins are known endocrine-disrupting chemicals that have been shown to negatively affect both male and female reproduction. Exposure to these chemicals occurs on a daily basis owing to these compounds being found in plastics, personal care products, and pesticides. Recently, studies have shown that these chemicals may cause transgenerational effects on reproduction in both males and females. This is of concern because exposure to these chemicals prenatally or during adult life can negatively impact the reproductive health of future generations. This mini-review summarizes the endocrine-disrupting chemicals that humans are exposed to on a daily basis and what is known about the transgenerational effects that these chemicals may have on male and female reproduction. FULL TEXT

Back To Top
Search