skip to Main Content

Bibliography Tag: male reproductive impacts

Dai et al., 2016

Dai, P., Hu, P., Tang, J., Li, Y., & Li, C.; “Effect of glyphosate on reproductive organs in male rat;” Acta Histochemica, 2016, 118(5), 519-526; DOI: 10.1016/j.acthis.2016.05.009.

ABSTRACT:

Glyphosate as an active ingredient of Roundup((R)) which is thought to be one of the most popular herbicide was used worldwide. Many studies have focused on reproductive toxicity on glyphosate-based herbicide, but few evidence exists to imply the male reproductive toxicity of glyphosate alone in vivo. In this study SD rats were Lavaged with glyphosate at doses of 5, 50, 500mg/kg to detect the toxicity of glyphosate on rat testis. Glyphosate significantly decreased the average daily feed intake at dose of 50mg/kg, and the weight of seminal vesicle gland, coagulating gland as well as the total sperm count at dose of 500mg/kg. Immunohistochemistry of androgen receptor (AR) has no difference among all groups. As to testosterone, estradiol, progesterone and oxidative stress parameters, the level of them has no differences amidst all doses. Taken together, we conclude that glyphosate alone has low toxicity on male rats reproductive system.

Pham et al., 2019

Pham, T. H., Derian, L., Kervarrec, C., Kernanec, P. Y., Jegou, B., Smagulova, F., & Gely-Pernot, A.; “Perinatal Exposure to Glyphosate and a Glyphosate-Based Herbicide Affect Spermatogenesis in Mice;” Toxicological Science, 2019, 169(1), 260-271; DOI: 10.1093/toxsci/kfz039.

ABSTRACT:

Glyphosate is the most widely used herbicide in the world. Several studies have investigated the effects of glyphosate and glyphosate-based herbicides (GBHs) on male reproduction, but there is still little and conflicting evidence for its toxicity. In this study, we analyzed the effects of glyphosate, alone or in formula, on the male reproductive system. Pregnant mice were treated from E10.5 to 20 days postpartum by adding glyphosate or a GBH (Roundup 3 Plus) to their drinking water at 0.5 (the acceptable daily intake, ADI dose), 5 and 50 mg/kg/day. Male offspring derived from treated mice were sacrificed at 5, 20, and 35 days old (d.o.) and 8 months old (m.o.) for analysis. Our result showed that exposure to glyphosate, but not GBH, affects testis morphology in 20 d.o. and decrease serum testosterone concentrations in 35 d.o. males. We identified that the spermatozoa number decreased by 89% and 84% in 0.5 and 5 mg/kg/day of GBH and glyphosate groups, respectively. Moreover, the undifferentiated spermatogonia numbers were decreased by 60% in 5 mg/kg/day glyphosate group, which could be due to the alterations in the expression of genes involved in germ cell differentiation such as Sall4 and Nano3 and apoptosis as Bax and Bcl2. In 8 m.o. animals, a decreased testosterone level was observed in GBH groups. Our data demonstrate that glyphosate and GBHs could cause endocrine-disrupting effects on male reproduction at low doses. As glyphosate has effects at the ADI level, our data suggest that the current ADI for glyphosate could be overestimated.

Griffin et al., 1997

Griffin, R. J., Godfrey, V. B., Kim, Y. C., & Burka, L. T.; “Sex-dependent differences in the disposition of 2,4-dichlorophenoxyacetic acid in Sprague-Dawley rats, B6C3F1 mice, and Syrian hamsters;” Drug Metabolism and Disposition, 1997, 25(9), 1065-1071.

ABSTRACT:

2,4-Dichlorophenoxyacetic acid (2,4-D), a widely used broadleaf herbicide, is under investigation in a study of peroxisome proliferators. To supplement that study, male and female rats, mice, and hamsters were dosed with 14C-2,4-D orally at 5 and 200 mg/kg and tissue distributions were determined. Blood, liver, kidney, muscle, skin, fat, brain, testes, and ovaries were examined. At early time points tissues from female rats consistently contained higher amounts of radioactivity than did corresponding tissues from males (up to 9 times). By 72 hr, tissue levels were equivalent and males and females had excreted equal amounts of radioactivity. This sex difference was absent in mice. In hamsters, males had higher tissue levels than females. Taurine, glycine, and glucuronide conjugates of 2,4-D were excreted along with parent. Metabolite profiles differed between species qualitatively and quantitatively; however, differences between sexes were minimal. Plasma elimination curves were generated in male and female rats after iv and oral administration. Kinetic analysis revealed significant differences in elimination and exposure parameters consistent with a greater ability to clear 2,4-D by male rats relative to females. This suggests that at equivalent doses, female rats are exposed to higher concentrations of 2,4-D for a longer time than males and may be more susceptible to 2,4-D-induced toxicity. These sex-dependent variations in the clearance of 2,4-D in rats and hamsters may indicate a need for sex-specific models to accurately assess human health risks. FULL TEXT

Christensen et al., 2016

Christensen, C. H., Barry, K. H., Andreotti, G., Alavanja, M. C., Cook, M. B., Kelly, S. P., Burdett, L. A., Yeager, M., Beane Freeman, L. E., Berndt, S. I., & Koutros, S.; “Sex Steroid Hormone Single-Nucleotide Polymorphisms, Pesticide Use, and the Risk of Prostate Cancer: A Nested Case-Control Study within the Agricultural Health Study;” Frontiers in Oncology, 2016, 6, 237; DOI: 10.3389/fonc.2016.00237.

ABSTRACT:

Experimental and epidemiologic investigations suggest that certain pesticides may alter sex steroid hormone synthesis, metabolism or regulation, and the risk of hormone-related cancers. Here, we evaluated whether single-nucleotide polymorphisms (SNPs) involved in hormone homeostasis alter the effect of pesticide exposure on prostate cancer risk. We evaluated pesticide-SNP interactions between 39 pesticides and SNPs with respect to prostate cancer among 776 cases and 1,444 controls nested in the Agricultural Health Study cohort. In these interactions, we included candidate SNPs involved in hormone synthesis, metabolism or regulation (N = 1,100), as well as SNPs associated with circulating sex steroid concentrations, as identified by genome-wide association studies (N = 17). Unconditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Multiplicative SNP-pesticide interactions were calculated using a likelihood ratio test. We translated p-values for interaction into q-values, which reflected the false discovery rate, to account for multiple comparisons. We observed a significant interaction, which was robust to multiple comparison testing, between the herbicide dicamba and rs8192166 in the testosterone metabolizing gene SRD5A1 (p-interaction = 4.0 x 10(-5); q-value = 0.03), such that men with two copies of the wild-type genotype CC had a reduced risk of prostate cancer associated with low use of dicamba (OR = 0.62 95% CI: 0.41, 0.93) and high use of dicamba (OR = 0.44, 95% CI: 0.29, 0.68), compared to those who reported no use of dicamba; in contrast, there was no significant association between dicamba and prostate cancer among those carrying one or two copies of the variant T allele at rs8192166. In addition, interactions between two organophosphate insecticides and SNPs related to estradiol metabolism were observed to result in an increased risk of prostate cancer. While replication is needed, these data suggest both agonistic and antagonistic effects on circulating hormones, due to the combination of exposure to pesticides and genetic susceptibility, may impact prostate cancer risk. FULL TEXT

Alexander et al., 2017

Alexander, M., Koutros, S., Bonner, M. R., Barry, K. H., Alavanja, M. C. R., Andreotti, G., Byun, H. M., Chen, L., Beane Freeman, L. E., Hofmann, J. N., Kamel, F., Moore, L. E., Baccarelli, A., & Rusiecki, J.; “Pesticide use and LINE-1 methylation among male private pesticide applicators in the Agricultural Health Study;” Environ Epigenet, 2017, 3(2), dvx005; DOI: 10.1093/eep/dvx005.

ABSTRACT:

Cancer risk may be associated with DNA methylation (DNAm) levels in Long Interspersed Nucleotide Element 1 (LINE-1), a surrogate for global DNAm. Exposure to certain pesticides may increase risk of particular cancers, perhaps mediated in part through global DNAm alterations. To date, human data on pesticide exposure and global DNAm alterations are limited. The goal of this study was to evaluate alterations of LINE-1 DNAm by pesticides in a variety of classes. Data from 596 cancer-free male participants enrolled in the Agricultural Health Study (AHS) were used to examine associations between use of 57 pesticides and LINE-1 DNAm measured via Pyrosequencing in peripheral blood leucocytes. Participants provided information on pesticide use at three contacts between 1993 and 2010. Associations of ever/never pesticide use and lifetime days of application (years of use x days per year) and LINE-1 DNAm level were assessed using linear regression, adjusting for potential confounders (race, age at blood draw, and frequency of drinking alcohol) and other moderately correlated pesticides. After adjustment, ever application of 10 pesticides was positively associated and ever application of eight pesticides was negatively associated with LINE-1 DNAm. In dose-response analyses, increases in five pesticides (imazethapyr, fenthion, EPTC, butylate, and heptachlor) were associated with increasing LINE-1 DNAm (ptrend < 0.05) and increases in three pesticides (carbaryl, chlordane, and paraquat) were associated with decreasing LINE-1 DNAm (ptrend < 0.05). This study provides some mechanistic insight into the pesticide-cancer relationship, which may be mediated in part by epigenetics. FULL TEXT

Chiu et al., 2015

Chiu, Y. H., Afeiche, M. C., Gaskins, a. J., Williams, P. L., Petrozza, J. C., Tanrikut, C., Hauser, R., & Chavarro, J. E.; “Fruit and vegetable intake and their pesticide residues in relation to semen quality among men from a fertility clinic;” Human Reproduction, 2015, 0, 1-10; DOI: 10.1093/humrep/dev064.

ABSTRACT:

STUDY QUESTION: Is consumption of fruits and vegetables with high levels of pesticide residues associated with lower semen quality?
Summary Answer: Consumption of fruits and vegetables with high levels of pesticide residues was associated with a lower total sperm count and a lower percentage of morphologically normal sperm among men presenting to a fertility clinic.

WHAT IS KNOWN ALREADY: Occupational and environmental exposure to pesticides is associated with lower semen quality. Whether the same is true for exposure through diet is unknown.

STUDY DESIGN, SIZE, DURATION: Men enrolled in the Environment and Reproductive Health (EARTH) Study, an ongoing prospective cohort at an academic medical fertility center. Male partners (n = 155) in subfertile couples provided 338 semen samples during 2007–2012.

PARTICIPANTS/MATERIALS, SETTING, METHODS: Semen samples were collected over an 18-month period following diet assessment. Sperm concentration and motility were evaluated by computer-aided semen analysis (CASA). Fruits and vegetables were categorized as containing high or low-to-moderate pesticide residues based on data from the annual United States Department of Agriculture Pesticide Data Program. Linear mixed models were used to analyze the association of fruit and vegetable intake with sperm parameters accounting for within-person correlations across repeat samples while adjusting for potential confounders.

MAIN RESULTS AND ROLE OF CHANCE: Total fruit and vegetable intake was unrelated to semen quality parameters. High pesticide residue fruit and vegetable intake, however, was associated with poorer semen quality. On average, men in highest quartile of high pesticide residue fruit and vegetable intake (≥1.5 servings/day) had 49% (95% confidence interval (CI): 31%, 63%) lower total sperm count and 32% (95% CI: 7%, 58%) lower percentage of morphologically normal sperm than men in the lowest quartile of intake (,0.5 servings/day) (P, trend ¼ 0.003 and 0.02, respectively). Low-to-moderate pesticide residue fruit and vegetable intake was associated with a higher percentage of morphologically normal sperm (P, trend ¼ 0.04).

LIMITATIONS, REASONS FOR CAUTION: Surveillance data, rather than individual pesticide assessment,was used to assess the pesticide residue status of fruits and vegetables. CASA is a useful method for clinical evaluation but may be considered less favorable for accurate semen analysis in the research setting. Owing to the observational nature of the study, confirmation is required by interventional studies as well.

WIDER IMPLICATIONS OF THE FINDINGS: To our knowledge, this is the first report on the consumption of fruits and vegetables with high levels of pesticide residue in relation to semen quality. Further confirmation of these findings is warranted.

FULL TEXT

Romano et al., 2010

Romano, R. M., Romano, M. A., Bernardi, M. M., Furtado, P. V., & Oliveira, C. A.; “Prepubertal exposure to commercial formulation of the herbicide glyphosate alters testosterone levels and testicular morphology;” Archives of Toxicology, 2010, 84(4), 309-317; DOI: 10.1007/s00204-009-0494-z.

ABSTRACT:

Glyphosate is a herbicide widely used to kill weeds both in agricultural and non-agricultural landscapes. Its reproductive toxicity is related to the inhibition of a StAR protein and an aromatase enzyme, which causes an in vitro reduction in testosterone and estradiol synthesis. Studies in vivo about this herbicide effects in prepubertal Wistar rats reproductive development were not performed at this moment. Evaluations included the progression of puberty, body development, the hormonal production of testosterone, estradiol and corticosterone, and the morphology of the testis. Results showed that the herbicide (1) significantly changed the progression of puberty in a dose-dependent manner; (2) reduced the testosterone production, in semineferous tubules’ morphology, decreased significantly the epithelium height (P < 0.001; control = 85.8 +/- 2.8 microm; 5 mg/kg = 71.9 +/- 5.3 microm; 50 mg/kg = 69.1 +/- 1.7 microm; 250 mg/kg = 65.2 +/- 1.3 microm) and increased the luminal diameter (P < 0.01; control = 94.0 +/- 5.7 microm; 5 mg/kg = 116.6 +/- 6.6 microm; 50 mg/kg = 114.3 +/- 3.1 microm; 250 mg/kg = 130.3 +/- 4.8 microm); (4) no difference in tubular diameter was observed; and (5) relative to the controls, no differences in serum corticosterone or estradiol levels were detected, but the concentrations of testosterone serum were lower in all treated groups (P < 0.001; control = 154.5 +/- 12.9 ng/dL; 5 mg/kg = 108.6 +/- 19.6 ng/dL; 50 mg/dL = 84.5 +/- 12.2 ng/dL; 250 mg/kg = 76.9 +/- 14.2 ng/dL). These results suggest that commercial formulation of glyphosate is a potent endocrine disruptor in vivo, causing disturbances in the reproductive development of rats when the exposure was performed during the puberty period. FULL TEXT

Duty et al., 2003

Duty, S. M., Singh, N. P., Silva, M. J., Barr, D. B., Brock, J. W., Ryan, L., Herrick, R. F., Christiani, D. C., & Hauser, R.; “The relationship between environmental exposures to phthalates and DNA damage in human sperm using the neutral comet assay;” Environmental Health Perspectives, 2003, 111(9), 1164-1169; DOI: 10.1289/ehp.5756.

ABSTRACT:

Phthalates are industrial chemicals widely used in many commercial applications. The general population is exposed to phthalates through consumer products as well as through diet and medical treatments. To determine whether environmental levels of phthalates are associated with altered DNA integrity in human sperm, we selected a population without identified sources of exposure to phthalates. One hundred sixty-eight subjects recruited from the Massachusetts General Hospital Andrology Laboratory provided a semen and a urine sample. Eight phthalate metabolites were measured in urine by using high-performance liquid chromatography and tandem mass spectrometry; data were corrected for urine dilution by adjusting for specific gravity. The neutral single-cell microgel electrophoresis assay (comet assay) was used to measure DNA integrity in sperm. VisComet image analysis software was used to measure comet extent, a measure of total comet length (micrometers); percent DNA in tail (tail%), a measure of the proportion of total DNA present in the comet tail; and tail distributed moment (TDM), an integrated measure of length and intensity (micrometers). For an interquartile range increase in specific gravity-adjusted monoethyl phthalate (MEP) level, the comet extent increased significantly by 3.6 micro m [95% confidence interval (95% CI), 0.74-6.47]; the TDM also increased 1.2 micro m (95% CI, -0.05 to 2.38) but was of borderline significance. Monobutyl, monobenzyl, monomethyl, and mono-2-ethylhexyl phthalates were not significantly associated with comet assay parameters. In conclusion, this study represents the first human data to demonstrate that urinary MEP, at environmental levels, is associated with increased DNA damage in sperm.  FULL TEXT

Hued, 2012

Hued, Andrea Cecilia, Oberhofer, Sabrina, & de los Ángeles Bistoni, María; “Exposure to a Commercial Glyphosate Formulation (Roundup®) Alters Normal Gill and Liver Histology and Affects Male Sexual Activity of Jenynsia multidentata (Anablepidae, Cyprinodontiformes);” Archives of Environmental Contamination and Toxicology, 2012, 62(1), 107-117; DOI: 10.1007/s00244-011-9686-7.

ABSTRACT:

Roundup is the most popular commercial glyphosate formulation applied in the cultivation of genetically modified glyphosate-resistant crops. The aim of this study was to evaluate the histological lesions of the neotropical native fish, Jenynsia multidentata, in response to acute and subchronic exposure to Roundup and to determine if subchronic exposure to the herbicide causes changes in male sexual activity of individuals exposed to a sublethal concentration (0.5 mg/l) for 7 and 28 days. The estimated 96-h LC50 was 19.02 mg/l for both male and female fish. Gill and liver histological lesions were evaluated through histopathological indices allowing quantification of the histological damages in fish exposed to different concentrations of the herbicide. Roundup induced different histological alterations in a concentration-dependent manner. In subchronic-exposure tests, Roundup also altered normal histology of the studied organs and caused a significant decrease in the number of copulations and mating success in male fish exposed to the herbicide. It is expected that in natural environments contaminated with Roundup, both general health condition and reproductive success of J. multidenatata could be seriously affected.

Teleken et al., 2019

Teleken, J. L., Gomes, E. C. Z., Marmentini, C., Moi, M. B., Ribeiro, R. A., Balbo, S. L., Amorim, E. M. P., & Bonfleur, M. L.; “Glyphosate-based herbicide exposure during pregnancy and lactation malprograms the male reproductive morphofunction in F1 offspring;” Journal of Developmental Origins of Health and Disease, 2019, 1-8; DOI: 10.1017/s2040174419000382.

ABSTRACT:

One of the most consumed pesticides in the world is glyphosate, the active ingredient in the herbicide ROUNDUP(R). Studies demonstrate that glyphosate can act as an endocrine disruptor and that exposure to this substance at critical periods in the developmental period may program the fetus to induce reproductive damage in adulthood. Our hypothesis is that maternal exposure to glyphosate during pregnancy and lactation in mice will affect the development of male reproductive organs, impairing male fertility during adult life. Female mice consumed 0.5% glyphosate-ROUNDUP(R) in their drinking water [glyphosate-based herbicide (GBH) group] or filtered water [control (CTRL) group] from the fourth day of pregnancy until the end of the lactation period. Male F1 offspring were designated, according to their mother’s treatment, as CTRL-F1 and GBH-F1. Female mice that drank glyphosate displayed reduced body weight (BW) gain during gestation, but no alterations in litter size. Although GBH male F1 offspring did not exhibit modifications in BW, they demonstrated delayed testicular descent. Furthermore, at PND150, GBH-F1 mice presented a lower number of spermatozoa in the cauda epididymis and reduced epithelial height of the seminiferous epithelium. Notably, intratesticular testosterone concentrations were enhanced in GBH-F1 mice; we show that it is an effect associated with increased plasma and pituitary concentrations of luteinizing hormone. Therefore, data indicate that maternal exposure to glyphosate-ROUNDUP(R) during pregnancy and lactation may lead to decreased spermatogenesis and disruptions in hypothalamus-pituitary-testicular axis regulation in F1 offspring.

Back To Top
Search