skip to Main Content

Bibliography Tag: heartland region

Rusiecki et al., 2017

Rusiecki JA, Beane Freeman LE, Bonner MR, Alexander M, Chen L, Andreotti G, Barry KH, Moore LE, Byun HM, Kamel F, Alavanja M, Hoppin JA, Baccarelli A,”High pesticide exposure events and DNA methylation among pesticide applicators in the agricultural health study,” Environmental and Molecular Mutagenesis, 2017, 58:1, DOI: 10.1002/em.22067.

ABSTRACT: Pesticide exposure has been associated with acute and chronic adverse health effects. DNA methylation (DNAm) may mediate these effects. We evaluated the association between experiencing unusually high pesticide exposure events (HPEEs) and DNAm among pesticide applicators in the Agricultural Health Study (AHS), a prospective study of applicators from Iowa and North Carolina. DNA was extracted from whole blood from male AHS pesticide applicators (n = 695). Questionnaire data were used to ascertain the occurrence of HPEEs over the participant’s lifetime. Pyrosequencing was used to quantify DNAm in CDH1, GSTp1, and MGMT promoters, and in the repetitive element, LINE-1. Linear and robust regression analyses evaluated adjusted associations between HPEE and DNAm. Ever having an HPEE (n = 142; 24%) was associated with elevated DNAm in the GSTp1 promoter at CpG7 (chr11:67,351,134; P < 0.01) and for the mean across the CpGs measured in the GSTp1 promoter (P < 0.01). In stratified analyses, elevated GSTP1 promoter DNAm associated with HPEE was more pronounced among applicators >59 years and those with plasma folate levels ≤16.56 ng/mL (p-interaction <0.01); HPEE was associated with reduced MGMT promoter DNAm at CpG2 (chr10:131,265,803; P = 0.03), CpG3 (chr10:131,265,810; P = 0.05), and the mean across CpGs measured in the MGMT promoter (P = 0.03) among applicators >59 years and reduced LINE-1 DNAm (P = 0.05) among applicators with ≤16.56 ng/mL plasma folate. Non-specific HPEEs may contribute to increased DNAm in GSTp1, and in some groups, reduced DNAm in MGMT and LINE-1. The impacts of these alterations on disease development are unclear, but elevated GSTp1 promoter DNAm and subsequent gene inactivation has been consistently associated with prostate cancer.

Lerro et al., 2017

Lerro CC, Beane Freeman LE, Portengen L, Kang D, Lee K, Blair A, Lynch CF, Bakke B, De Roos AJ, Vermeulen RC, “A longitudinal study of atrazine and 2,4-D exposure and oxidative stress markers among Iowa corn farmers,” Environmental and Molecular Mutagenesis, 2017, 58:1, DOI: 10.1002/em.22069.

ABSTRACT: Reactive oxygen species, potentially formed through environmental exposures, can overwhelm an organism’s antioxidant capabilities resulting in oxidative stress. Long-term oxidative stress is linked with chronic diseases. Pesticide exposures have been shown to cause oxidative stress in vivo. We utilized a longitudinal study of corn farmers and non-farming controls in Iowa to examine the impact of exposure to the widely used herbicides atrazine and 2,4-dichlorophenoxyacetic acid (2,4-D) on markers of oxidative stress. 225 urine samples were collected during five agricultural time periods (pre-planting, planting, growing, harvest, off-season) for 30 farmers who applied pesticides occupationally and 10 controls who did not; all were non-smoking men ages 40-60. Atrazine mercapturate (atrazine metabolite), 2,4-D, and oxidative stress markers (malondialdehyde [MDA], 8-hydroxy-2′-deoxyguanosine [8-OHdG], and 8-isoprostaglandin-F [8-isoPGF]) were measured in urine. We calculated β estimates and 95% confidence intervals (95%CI) for each pesticide-oxidative stress marker combination using multivariate linear mixed-effect models for repeated measures. Farmers had higher urinary atrazine mercapturate and 2,4-D levels compared with controls. In regression models, after natural log transformation, 2,4-D was associated with elevated levels of 8-OHdG (β = 0.066, 95%CI = 0.008-0.124) and 8-isoPGF (β = 0.088, 95%CI = 0.004-0.172). 2,4-D may be associated with oxidative stress because of modest increases in 8-OHdG, a marker of oxidative DNA damage, and 8-isoPGF, a product of lipoprotein peroxidation, with recent 2,4-D exposure. Future studies should investigate the role of 2,4-D-induced oxidative stress in the pathogenesis of human diseases.

Back To Top
Search