skip to Main Content

Bibliography Tag: heartland region

Charles, 2017a

Dan Charles, “Arkansas Tries To Stop An Epidemic Of Herbicide Damage,” June 23, 2017,  NPR.

SUMMARY:

NPR story focusing on the farmer-vs-farmer conflicts arising in Arkansas due to dicamba damage.  By press date, 242 complaints had been received by state regulators.  On June 23, 2017 the Arkansas Plant Board voted to ban any spraying of dicamba on crops, other than pasture land, for 120 days.  The ban would take effect as soon as signed by the governor.  FULL TEXT

Steed, 2016

Stephen Steed, “Dicamba decision looms for governor; limit herbicide’s use, Arkansas panel urges,” December 18, 2016, Arkansas Online.

SUMMARY:

The governor of Arkansas Asa Hutchinson is pondering whether to accept recommendations by the state Plant Board to limit dicamba use in the coming growing season over concerns about damage from drift from new GE dicamba-tolerant crops.  FULL TEXT

Monsanto, 2015b

Monsanto, “Roundup Ready Plus 2015 Weed Management Recommendations and Incentives: Plains, Midwest, and Northeast,” 2015.

ABSTRACT:

Not Available

FULL TEXT

De Roos et al., 2005

Anneclaire J. De Roos, Aaron Blair, Jennifer A. Rusiecki, Jane A. Hoppin, Megan Svec, Mustafa Dosemeci, Dale P. Sandler, and Michael C. Alavanja, “Cancer Incidence among Glyphosate-Exposed Pesticide Applicators in the Agricultural Health Study,” Environmental Health Perspectives, 2005, 113, DOI: 10.1289/EHP.7340.

ABSTRACT:

Glyphosate is a broad-spectrum herbicide that is one of the most frequently applied pesticides in the world. Although there has been little consistent evidence of genotoxicity or carcinogenicity from in vitro and animal studies, a few epidemiologic reports have indicated potential health effects of glyphosate. We evaluated associations between glyphosate exposure and cancer incidence in the Agricultural Health Study (AHS), a prospective cohort study of 57,311 licensed pesticide applicators in Iowa and North Carolina. Detailed information on pesticide use and other factors was obtained from a self-administered questionnaire completed at time of enrollment (1993–1997). Among private and commercial applicators, 75.5% reported having ever used glyphosate, of which > 97% were men. In this analysis, glyphosate exposure was defined as a) ever personally mixed or applied products containing glyphosate; b) cumulative lifetime days of use, or “cumulative exposure days” (years of use × days/year); and c) intensity-weighted cumulative exposure days (years of use × days/year × estimated intensity level). Poisson regression was used to estimate exposure–response relations between glyphosate and incidence of all cancers combined and 12 relatively common cancer subtypes. Glyphosate exposure was not associated with cancer incidence overall or with most of the cancer subtypes we studied. There was a suggested association with multiple myeloma incidence that should be followed up as more cases occur in the AHS. Given the widespread use of glyphosate, future analyses of the AHS will allow further examination of long-term health effects, including less common cancers. FULL TEXT

Bohn et al., 2014

T. Bøhn, , M. Cuhra, T. Traavik, M. Sanden, J. Fagan, R. Primicerio, “Compositional differences in soybeans on the market: Glyphosate accumulates in Roundup Ready GM soybeans,” Food Chemistry, 2014, 153, DOI: 10.1016/J.FOODCHEM.2013.12.054.

ABSTRACT:

This article describes the nutrient and elemental composition, including residues of herbicides and pesticides, of 31 soybean batches from Iowa, USA. The soy samples were grouped into three different categories: (i) genetically modified, glyphosate-tolerant soy (GM-soy); (ii) unmodified soy cultivated using a conventional ‘‘chemical’’ cultivation regime; and (iii) unmodified soy cultivated using an organic cultivation regime. Organic soybeans showed the healthiest nutritional profile with more sugars, such as glucose, fructose, sucrose and maltose, significantly more total protein, zinc and less fibre than both conventional and GM-soy. Organic soybeans also contained less total saturated fat and total omega-6 fatty acids than both conventional and GM-soy. GM-soy contained high residues of glyphosate and AMPA (mean 3.3 and 5.7 mg/kg, respectively). Conventional and organic soybean batches contained none of these agrochemicals. Using 35 different nutritional and elemental variables to characterise each soy sample, we were able to discriminate GM, conventional and organic soybeans without exception, demonstrating ‘‘substantial non-equivalence’’ in compositional characteristics for ‘ready-to-market’ soybeans.  FULL TEXT

Davis et al., 2012

Adam S. Davis, Jason D. Hill, Craig A. Chase, Ann M. Johanns, and Matt Liebman,  “Increasing Cropping System Diversity Balances Productivity, Profitability and Environmental Health,” PLoS One, 2012, 7:10, DOI: 10.1371/JOURNAL.PONE.0047149

ABSTRACT:

Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and large negative impacts on the environment. We hypothesized that cropping system diversification would promote ecosystem services that would supplement, and eventually displace, synthetic external inputs used to maintain crop productivity. To test this, we conducted a field study from 2003–2011 in Iowa that included three contrasting systems varying in length of crop sequence and inputs. We compared a conventionally managed 2-yr rotation (maize-soybean) that received fertilizers and herbicides at rates comparable to those used on nearby farms with two more diverse cropping systems: a 3-yr rotation (maize-soybean-small grain + red clover) and a 4-yr rotation (maize-soybean-small grain + alfalfa-alfalfa) managed with lower synthetic N fertilizer and herbicide inputs and periodic applications of cattle manure. Grain yields, mass of harvested products, and profit in the more diverse systems were similar to, or greater than, those in the conventional system, despite reductions of agrichemical inputs. Weeds were suppressed effectively in all systems, but freshwater toxicity of the more diverse systems was two orders of magnitude lower than in the conventional system. Results of our study indicate that more diverse cropping systems can use small amounts of synthetic agrichemical inputs as powerful tools with which to tune, rather than drive, agroecosystem performance, while meeting or exceeding the performance of less diverse systems.  FULL TEXT

Pleasants and Oberhauser, 2012

John M. Pleasants and Karen S. Oberhauser, “Milkweed loss in agricultural fields because of herbicide use: effect on the monarch butterfly population,” Insect Conservation and Diversity, 2012, 6:2, DOI: 10.1111/J.1752-4598.2012.00196.X.

ABSTRACT:

1. The size of the Mexican overwintering population of monarch butter- flies has decreased over the last decade. Approximately half of these butterflies come from the U.S. Midwest where larvae feed on common milkweed. There has been a large decline in milkweed in agricultural fields in the Midwest over the last decade. This loss is coincident with the increased use of glyphosate herbicide in conjunction with increased planting of genetically modified (GM) glyphosate-tolerant corn (maize) and soybeans (soya).

2. We investigate whether the decline in the size of the overwintering population can be attributed to a decline in monarch production owing to a loss of milkweeds in agricultural fields in the Midwest. We estimate Midwest annual monarch production using data on the number of monarch eggs per milkweed plant for milkweeds in different habitats, the density of milkweeds in different habitats, and the area occupied by those habitats on the landscape.

3. We estimate that there has been a 58% decline in milkweeds on the Midwest landscape and an 81% decline in monarch production in the Midwest from 1999 to 2010. Monarch production in the Midwest each year was positively correlated with the size of the subsequent overwintering population in Mexico. Taken together, these results strongly suggest that a loss of agricultural milkweeds is a major contributor to the decline in the monarch population.

4. The smaller monarch population size that has become the norm will make the species more vulnerable to other conservation threats.  FULL TEXT

Chang et al., 2011

Feng-chih Chang, Matt F. Simcik, Paul D. Capel, “Occurrence and fate of the herbicide glyphosate and its degradate aminomethylphosphonic acid in the atmosphere,” Environmental Toxicology and Chemistry, 2011, 30:3, DOI: 10.1002/ETC.431.

ABSTRACT:

This is the first report on the ambient levels of glyphosate, the most widely used herbicide in the United States, and its major degradation product, aminomethylphosphonic acid (AMPA), in air and rain. Concurrent, weekly integrated air particle and rain samples were collected during two growing seasons in agricultural areas in Mississippi and Iowa. Rain was also collected in Indiana in a preliminary phase of the study. The frequency of glyphosate detection ranged from 60 to 100% in both air and rain. The concentrations of glyphosate ranged from <0.01 to 9.1 ng/m3 and from <0.1 to 2.5 µg/L in air and rain samples, respectively. The frequency of detection and median and maximum concentrations of glyphosate in air were similar or greater to those of the other high-use herbicides observed in the Mississippi River basin, whereas its concentration in rain was greater than the other herbicides. It is not known what percentage of the applied glyphosate is introduced into the air, but it was estimated that up to 0.7% of application is removed from the air in rainfall. Glyphosate is efficiently removed from the air; it is estimated that an average of 97% of the glyphosate in the air is removed by a weekly rainfall ≥30 mm.   FULL TEXT

Swan et al., 2003

Swan SH, Kruse RL, Liu F, Barr DB, Drobnis EZ, Redmon JB, Wang C, Brazil C, Overstreet JW, “Semen quality in relation to biomarkers of pesticide exposure,” Environmental Health Perspectives, 2003, 111:12.

ABSTRACT: We previously reported reduced sperm concentration and motility in fertile men in a U.S. agrarian area (Columbia, MO) relative to men from U.S. urban centers (Minneapolis, MN; Los Angeles, CA; New York, NY). In the present study we address the hypothesis that pesticides currently used in agriculture in the Midwest contributed to these differences in semen quality. We selected men in whom all semen parameters (concentration, percentage sperm with normal morphology, and percentage motile sperm) were low (cases) and men in whom all semen parameters were within normal limits (controls) within Missouri and Minnesota (sample sizes of 50 and 36, respectively) and measured metabolites of eight current-use pesticides in urine samples provided at the time of semen collection. All pesticide analyses were conducted blind with respect to center and case-control status. Pesticide metabolite levels were elevated in Missouri cases, compared with controls, for the herbicides alachlor and atrazine and for the insecticide diazinon [2-isopropoxy-4-methyl-pyrimidinol (IMPY)]; for Wilcoxon rank test, p = 0.0007, 0.012, and 0.0004 for alachlor, atrazine, and IMPY, respectively. Men from Missouri with high levels of alachlor or IMPY were significantly more likely to be cases than were men with low levels [odds ratios (ORs) = 30.0 and 16.7 for alachlor and IMPY, respectively], as were men with atrazine levels higher than the limit of detection (OR = 11.3). The herbicides 2,4-D (2,4-dichlorophenoxyacetic acid) and metolachlor were also associated with poor semen quality in some analyses, whereas acetochlor levels were lower in cases than in controls (p = 0.04). No significant associations were seen for any pesticides within Minnesota, where levels of agricultural pesticides were low, or for the insect repellent DEET (N,N-diethyl-m-toluamide) or the malathion metabolite malathion dicarboxylic acid. These associations between current-use pesticides and reduced semen quality suggest that agricultural chemicals may have contributed to the reduction in semen quality in fertile men from mid-Missouri we reported previously.  FULL TEXT

Swan, 2006

Swan SH, “Semen quality in fertile US men in relation to geographical area and pesticide exposure,” International Journal of Andrology, 2006, 29:1.

ABSTRACT: We conducted the first US study to compare semen quality among study centres using standardized methods and strict quality control. We present data on semen quality in partners of 493 pregnant women recruited through prenatal clinics in four US cities during 1999-2001. Sperm concentration, semen volume and motility were determined at the centres and morphology was assessed at a central laboratory. While between-centre differences in sperm morphology and sample volume were small, sperm concentration and motility were significantly reduced in Columbia, MO (MO) relative to men in New York, NY, Minneapolis, MN and Los Angeles, CA; total number of motile sperm was 113 x 10(6) in MO and 162, 201 and 196 x 10(6) in CA, MN and NY respectively. Differences among centres remained significant in multivariate models that controlled for abstinence time, semen analysis time, age, race, smoking, history of sexually transmitted disease and recent fever (all p-values <0.01). We hypothesized that poorer sperm concentration and motility in MO men relative to other centres might be related to agricultural pesticides that are commonly used in the mid-west. We investigated this hypothesis by conducting a nested case-control study within the MO cohort. We selected 25 men in this cohort for whom all semen parameters (concentration, % normal morphology and % motile) were low as cases and an equal number of men for whom all semen parameters were within normal limits as controls. We measured metabolites of eight non-persistent, current-use pesticides in urine samples the men had provided at the time of semen collection. Pesticide metabolite levels were elevated in cases compared with controls for the herbicides alachlor and atrazine, and for the insecticide diazinon (2-isopropoxy-4-methyl-pyrimidinol) (p-values for Wilcoxon rank test = 0.0007, 0.012, and 0.0004 for alachlor, atrazine and diazinon respectively). Men with higher levels of alachlor or diazinon were significantly more likely to be cases than men with low levels [odds ratios (OR) = 30.0, 16.7 for alachlor and diazinon respectively], as were men with atrazine over the limit of detection (OR = 11.3). These associations between current-use pesticides and reduced semen quality suggest that agricultural chemicals may have contributed to the reduced semen quality seen in fertile men from mid-Missouri.

Back To Top
Search