skip to Main Content

Bibliography Tag: glyphosate

Séralini et al., 2014

Gilles-Eric Séralini, Emilie Clair, Robin Mesnage, Steeve Gress, Nicolas Defarge, Manuela Malatesta, Didier Hennequin and Joël Spiroux de Vendômois, “Republished study: long-term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize,” Environmental Sciences Europe, Bridging Science and Regulation at the Regional and European Level, 2014, 26:14. DOI: 10.1186/s12302-014-0014-5

ABSTRACT

BACKGROUND: The health effects of a Roundup-tolerant NK603 genetically modified (GM) maize(from 11% in the diet), cultivated with or without Roundup application and Roundup alone (from 0.1 ppb of the full pesticide containing glyphosate and adjuvants) in drinking water, were evaluated for 2 years in rats. This study constitutes a follow-up investigation of a 90-day feeding study conducted by Monsanto in order to obtain commercial release of this GMO, employing the same rat strain and analyzing biochemical parameters on the same number of animals per group as our investigation. Our research represents the first chronic study on these substances, in which all observations including tumors are reported chronologically. Thus, it was not designed as a carcinogenicity study. We report the major findings with 34 organs observed and 56 parameters analyzed at 11 time points for most organs.

RESULTS: Biochemical analyses confirmed very significant chronic kidney deficiencies, for all treatments and both sexes; 76% of the altered parameters were kidney-related.In treated males, liver congestions and necrosis were 2.5 to 5.5 times higher.Marked and severe nephropathies were also generally 1.3 to 2.3 times greater. In females, all treatment groups showed a two- to threefold increase in mortality,and deaths were earlier. This difference was also evident in three male groups fed with GM maize. All results were hormone- and sex-dependent, and the pathological profiles were comparable. Females developed large mammary tumors more frequently and before controls; the pituitary was the second most disabled organ; the sex hormonal balance was modified by consumption of GM maize and Roundup treatments.Males presented up to four times more large palpable tumors starting 600 days earlier than in the control group, in which only one tumor was noted. These results may be explained by not only the non-linear endocrine-disrupting effects of Roundup but also by the over expression of the EPSPS transgene or other mutational effects in the GM maize and their metabolic consequences.

CONCLUSION: Our findings imply that long-term (2 year) feeding trials need to be conducted to thoroughly evaluate the safety of GM foods and pesticides in their full commercial formulations.  FULL TEXT

Lopes et al., 2014

Lopes FM, Varela Junior AS, Corcini CD, da Silva AC, Guazzelli VG, Tavares G, da Rosa CE, “Effect of glyphosate on the sperm quality of zebrafish Danio rerio,” Aquatic Toxicology, 2014, 155, DOI: 10.1016/j.aquatox.2014.07.006.

ABSTRACT

Glyphosate is a systemic, non-selective herbicide widely used in agriculture worldwide. It acts as an inhibitor of the enzyme 5-enolpyruvylshikimate-3-phosphate synthase by interrupting the synthesis of essential aromatic amino acids. This pathway is not present in animals, although some studies have shown that the herbicide glyphosate can affect fish reproduction. In this study, the effect of glyphosate on sperm quality of the fish Danio rerio was investigated after 24 and 96 h of exposure at concentrations of 5mg/L and 10mg/L. The spermatic cell concentration, sperm motility and motility period were measured employing conventional microscopy. The mitochondrial functionality, membrane integrity and DNA integrity were measured by fluorescence microscopy using specific probes. No significant differences in sperm concentration were observed; however, sperm motility and the motility period were reduced after exposure to both glyphosate concentrations during both exposure periods. The mitochondrial functionality and membrane and DNA integrity were also reduced at the highest concentration during both exposure periods. The results showed that glyphosate can induce harmful effects on reproductive parameters in D. rerio and that this change would reduce the fertility rate of these animals.

Armiliato et al., 2014

Armiliato N, Ammar D, Nezzi L, Straliotto M, Muller YM, Nazari EM, “Changes in ultrastructure and expression of steroidogenic factor-1 in ovaries of zebrafish Danio rerio exposed to glyphosate,” Journal of Toxicology and Environmental Health A, 2014, 77:7, DOI: 10.1080/15287394.2014.880393.

ABSTRACT

Glyphosate is a broad-spectrum organophosphate (OP) herbicide, highly soluble in water, and when applied in terrestrial systems it penetrates into soil, eventually reaching the aquatic community and affecting nontarget organisms. The aim of this study was to evaluate the toxicity of glyphosate on ovaries of zebrafish (Danio rerio). Ovaries (n = 18 per triplicate) were exposed to 65 μg/L of glyphosate [N-(phosphonomethyl) glycine] for 15 d. This concentration was determined according to Resolution 357/2005/CONAMA/Brazil, which establishes the permissible concentration of glyphosate in Brazilian inland waters. Nonexposed ovaries (n = 18 per triplicate) were used as control. Subsequently, morphology and expression of steroidogenic factor-1 (SF-1) of exposed and nonexposed ovaries was determined. No apparent changes were noted in general morphology of exposed and nonexposed ovaries. However, a significant increase in diameter of oocytes was observed after exposure to glyphosate. When ovarian ultrastructure was examined the presence of concentric membranes, appearing as myelin-like structures, associated with the external membranes of mitochondria and with yolk granules was found. After glyphosate exposure, immunohistochemistry and immunoblotting revealed greater expression of SF-1 in the oocytes, which suggests a relationship between oocyte growth and SF-1 expression. These subtle adverse effects of glyphosate on oocytes raised a potential concern for fish reproduction. These results contribute to understanding glyphosate-induced toxicity to nontarget organisms, showing subcellular and molecular impairments that may affect reproduction in +female fish.

Romano et al., 2011

Romano MA, Romano RM, Santos LD, Wisniewski P, Campos DA, de Souza PB, Viau P, Bernardi MM, Nunes MT, de Oliveira CA, “Glyphosate impairs male offspring reproductive development by disrupting gonadotropin expression.,” Archives in Toxicology, 2012, 86:4, DOI: 10.1007/s00204-011-0788-9.

ABSTRACT:

Sexual differentiation in the brain takes place from late gestation to the early postnatal days. This is dependent on the conversion of circulating testosterone into estradiol by the enzyme aromatase. The glyphosate was shown to alter aromatase activity and decrease serum testosterone concentrations. Thus, the aim of this study was to investigate the effect of gestational maternal glyphosate exposure (50 mg/kg, NOAEL for reproductive toxicity) on the reproductive development of male offspring. Sixty-day-old male rat offspring were evaluated for sexual behavior and partner preference; serum testosterone concentrations, estradiol, FSH and LH; the mRNA and protein content of LH and FSH; sperm production and the morphology of the seminiferous epithelium; and the weight of the testes, epididymis and seminal vesicles. The growth, the weight and age at puberty of the animals were also recorded to evaluate the effect of the treatment. The most important findings were increases in sexual partner preference scores and the latency time to the first mount; testosterone and estradiol serum concentrations; the mRNA expression and protein content in the pituitary gland and the serum concentration of LH; sperm production and reserves; and the height of the germinal epithelium of seminiferous tubules. We also observed an early onset of puberty but no effect on the body growth in these animals. These results suggest that maternal exposure to glyphosate disturbed the masculinization process and promoted behavioral changes and histological and endocrine problems in reproductive parameters. These changes associated with the hypersecretion of androgens increased gonadal activity and sperm production.

Eriksson et al., 2008

Mikael Eriksson, Lennart Hardell, Michael Carlberg and Måns Åkerman, “Pesticide exposure as risk factor for non-Hodgkin lymphoma including histopathological subgroup analysis,” International Journal of Cancer, 2008, 123, DOI: 10.1002/ijc.23589

ABSTRACT:

We report a population based case–control study of exposure to pesticides as risk factor for non-Hodgkin lymphoma (NHL). Male and female subjects aged 18–74 years living in Sweden were included during December 1, 1999, to April 30, 2002. Controls were selected from the national population registry. Exposure to different agents was assessed by questionnaire. In total 910 (91%) cases and 1016(92%) controls participated. Exposure to herbicides gave odds ratio(OR) 1.72, 95% confidence interval (CI) 1.18–2.51. Regarding phenoxyacetic acids highest risk was calculated for MCPA; OR 2.81,95% CI 1.27–6.22, all these cases had a latency period >10 years.Exposure to glyphosate gave OR 2.02, 95% CI 1.10–3.71 and with>10 years latency period OR 2.26, 95% CI 1.16–4.40. Insecticides overall gave OR 1.28, 95% CI 0.96–1.72 and impregnating agents OR 1.57, 95% CI 1.07–2.30. Results are also presented for different entities of NHL. In conclusion our study confirmed an association between exposure to phenoxyacetic acids and NHL and the association with glyphosate was considerably strengthened. FULL TEXT

De Roos et al., 2003

A J De Roos, S Zahm, K Cantor, D Weisenburger, F Holmes, L Burmeister, and A Blair, “Integrative assessment of multiple pesticides as risk factors for non-Hodgkin’s lymphoma among men,” Occupational and Environmental Medicine, 2003, 60:9, DOI: 10.1136/oem.60.9.e1

ABSTRACT:

METHODS: During the 1980s, the National Cancer Institute conducted three case-control studies of NHL in the midwestern United States. These pooled data were used to examine pesticide exposures in farming as risk factors for NHL in men. The large sample size (n = 3417) allowed analysis of 47 pesticides simultaneously, controlling for potential confounding by other pesticides in the model, and adjusting the estimates based on a prespecified variance to make them more stable.

RESULTS: Reported use of several individual pesticides was associated with increased NHL incidence, including organophosphate insecticides coumaphos, diazinon, and fonofos, insecticides chlordane, dieldrin, and copper acetoarsenite, and herbicides atrazine, glyphosate, and sodium chlorate. A subanalysis of these “potentially carcinogenic” pesticides suggested a positive trend of risk with exposure to increasing numbers.

CONCLUSION: Consideration of multiple exposures is important in accurately estimating specific effects and in evaluating realistic exposure scenarios.  FULL TEXT

Duke, 2015

Stephen O Duke, “Perspectives on transgenic, herbicide‐resistant crops in the United States almost 20 years after introduction,” Pest Management Science, 2015, 71:5, DOI: 10.1002/ps.3863.

ABSTRACT:

Herbicide-resistant crops have had profound impacts on weed management. Most of the impact has been by glyphosate-resistant maize, cotton, soybean, and canola. Significant economic savings, yield increases, and more efficacious and simplified weed management resulted in widespread adoption of the technology. Initially, glyphosate-resistant crops enabled significantly reduced tillage and reduced the environmental impact of weed management. Continuous use of glyphosate with glyphosate-resistant crops over broad areas facilitated the evolution of glyphosate-resistant weeds, which have resulted in increases in the use of tillage and other herbicides with glyphosate, reducing some of the initial environmental benefits of glyphosate-resistant crops. Transgenic crops with resistance to auxinic herbicides, as well as to herbicides that inhibit acetolactate synthase, acetyl-CoA carboxylase, and hydroxyphenylpyruvate dioxygenase, stacked with glyphosate and/or glufosinate resistance, will become available in the next few years. These technologies will provide additional weed management options for farmers, but will not have all of the positive impacts (reduced cost, simplified weed management, lowered environmental impact, and reduced tillage) that glyphosate-resistant crops had initially. In the more distant future, other herbicide-resistant crops (including non-transgenic ones), herbicides with new modes of action, and technologies that are currently in their infancy (e.g., bioherbicides, sprayable herbicidal RNAi, and/or robotic weeding) may impact the role of transgenic, herbicide-resistant crops in weed management.

Bouchard et al., 2011

Bouchard MF, Chevrier J, Harley KG, Kogut K, Vedar M, Calderon N, Trujillo C, Johnson C, Bradman A, Barr DB, Eskenazi B., “Prenatal exposure to organophosphate pesticides and IQ in 7-year-old children.,” Environmental Health Perspectives, 2011, 119:8, DOI: 10.1289/ehp.1003185.

ABSTRACT:
CONTEXT: Organophosphate (OP) pesticides are neurotoxic at high doses. Few studies have examined whether chronic exposure at lower levels could adversely affect children’s cognitive development.

OBJECTIVE: We examined associations between prenatal and postnatal exposure to OP pesticides and cognitive abilities in school-age children.

METHODS: We conducted a birth cohort study (Center for the Health Assessment of Mothers and Children of Salinas study) among predominantly Latino farmworker families from an agricultural community in California. We assessed exposure to OP pesticides by measuring dialkyl phosphate (DAP) metabolites in urine collected during pregnancy and from children at 6 months and 1, 2, 3.5, and 5 years of age. We administered the Wechsler Intelligence Scale for Children, 4th edition, to 329 children 7 years of age. Analyses were adjusted for maternal education and intelligence, Home Observation for Measurement of the Environment score, and language of cognitive assessment.

RESULTS: Urinary DAP concentrations measured during the first and second half of pregnancy had similar relations to cognitive scores, so we used the average of concentrations measured during pregnancy in further analyses. Averaged maternal DAP concentrations were associated with poorer scores for Working Memory, Processing Speed, Verbal Comprehension, Perceptual Reasoning, and Full-Scale intelligence quotient (IQ). Children in the highest quintile of maternal DAP concentrations had an average deficit of 7.0 IQ points compared with those in the lowest quintile. However, children’s urinary DAP concentrations were not consistently associated with cognitive scores.

CONCLUSIONS: Prenatal but not postnatal urinary DAP concentrations were associated with poorer intellectual development in 7-year-old children. Maternal urinary DAP concentrations in the present study were higher but nonetheless within the range of levels measured in the general U.S. population. FULL TEXT

Mostafalou and Abdollahi, 2017

Sara Mostafalou and Mohammad Abdollahi, “Pesticides: an update of human exposure and toxicity,” Archives of Toxicology, February 2017, 91:2, DOI: 10.1007/s00204-016-1849-x.

ABSTRACT:

Pesticides are a family of compounds which have brought many benefits to mankind in the agricultural, industrial, and health areas, but their toxicities in both humans and animals have always been a concern. Regardless of acute poisonings which are common for some classes of pesticides like organophosphoruses, the association of chronic and sub-lethal exposure to pesticides with a prevalence of some persistent diseases is going to be a phenomenon to which global attention has been attracted. In this review, incidence of various malignant, neurodegenerative, respiratory, reproductive, developmental, and metabolic diseases in relation to different routes of human exposure to pesticides such as occupational, environmental, residential, parental, maternal, and paternal has been systematically criticized in different categories of pesticide toxicities like carcinogenicity, neurotoxicity, pulmonotoxicity, reproductive toxicity, developmental toxicity, and metabolic toxicity. A huge body of evidence exists on the possible role of pesticide exposures in the elevated incidence of human diseases such as cancers, Alzheimer, Parkinson, amyotrophic lateral sclerosis, asthma, bronchitis, infertility, birth defects, attention deficit hyperactivity disorder, autism, diabetes, and obesity. Most of the disorders are induced by insecticides and herbicides most notably organophosphorus, organochlorines, phenoxyacetic acids, and triazine compounds.

Schütte et al., 2017

Gesine Schütte, Michael Eckerstorfer, Valentina Rastelli, Wolfram Reichenbecher, Sara Restrepo‑Vassalli, Marja Ruohonen‑Lehto, Anne‑Gabrielle Wuest Saucy, and Martha Mertens, “Herbicide resistance and biodiversity: agronomic and environmental aspects of genetically modified herbicide-resistant plants,” Environmental Sciences Europe, 2017, 29:5, DOI: 10.1186/s12302-016-0100-y.

ABSTRACT:

Farmland biodiversity is an important characteristic when assessing sustainability of agricultural practices and is of major international concern. Scientific data indicate that agricultural intensification and pesticide use are among the main drivers of biodiversity loss. The analysed data and experiences do not support statements that herbicide-resistant crops provide consistently better yields than conventional crops or reduce herbicide amounts. They rather show that the adoption of herbicide-resistant crops impacts agronomy, agricultural practice, and weed management and contributes to biodiversity loss in several ways: (i) many studies show that glyphosate-based herbicides, which were commonly regarded as less harmful, are toxic to a range of aquatic organisms and adversely affect the soil and intestinal microflora and plant disease resistance; the increased use of 2,4-D or dicamba, linked to new herbicide-resistant crops, causes special concerns. (ii) The adoption of herbicide-resistant crops has reduced crop rotation and favoured weed management that is solely based on the use of herbicides. (iii) Continuous herbicide resistance cropping and the intensive use of glyphosate over the last 20 years have led to the appearance of at least 34 glyphosate-resistant weed species worldwide. Although recommended for many years, farmers did not counter resistance development in weeds by integrated weed management, but continued to rely on herbicides as sole measure. Despite occurrence of widespread resistance in weeds to other herbicides, industry rather develops transgenic crops with additional herbicide resistance genes. (iv) Agricultural management based on broad-spectrum herbicides as in herbicide-resistant crops further decreases diversity and abundance of wild plants and impacts arthropod fauna and other farmland animals. Taken together, adverse impacts of herbicide-resistant crops on biodiversity, when widely adopted, should be expected and are indeed very hard to avoid. For that reason, and in order to comply with international agreements to protect and enhance biodiversity, agriculture needs to focus on practices that are more environmentally friendly, including an overall reduction in pesticide use. (Pesticides are used for agricultural as well non-agricultural purposes. Most commonly they are used as plant protection products and regarded as a synonym for it and so also in this text.) FULL TEXT

Back To Top
Search