skip to Main Content

Bibliography Tag: glyphosate

Mesnage et al., 2021D

Robin Mesnage, Mariam Ibragim, Daniele Mandrioli, Laura Falcioni, Eva Tibaldi, Fiorella Belpoggi, Inger Brandsma, Emma Bourne, Emanuel Savage, Charles A Mein, Michael N Antoniou; “Comparative Toxicogenomics of Glyphosate and Roundup Herbicides by Mammalian Stem Cell-Based Genotoxicity Assays and Molecular Profiling in Sprague-Dawley Rats”, Toxicological Sciences, 2021; DOI: 10.1093/toxsci/kfab143.

ABSTRACT:

Whether glyphosate-based herbicides (GBHs) are more potent than glyphosate alone at activating cellular mechanisms, which drive carcinogenesis remain controversial. As GBHs are more cytotoxic than glyphosate, we reasoned they may also be more capable of activating carcinogenic pathways. We tested this hypothesis by comparing the effects of glyphosate with Roundup GBHs both in vitro and in vivo. First, glyphosate was compared with representative GBHs, namely MON 52276 (European Union), MON 76473 (United Kingdom), and MON 76207 (United States) using the mammalian stem cell-based ToxTracker system. Here, MON 52276 and MON 76473, but not glyphosate and MON 76207, activated oxidative stress and unfolded protein responses. Second, molecular profiling of liver was performed in female Sprague-Dawley rats exposed to glyphosate or MON 52276 (at 0.5, 50, and 175 mg/kg bw/day glyphosate) for 90 days. MON 52276 but not glyphosate increased hepatic steatosis and necrosis. MON 52276 and glyphosate altered the expression of genes in liver reflecting TP53 activation by DNA damage and circadian rhythm regulation. Genes most affected in liver were similarly altered in kidneys. Small RNA profiling in liver showed decreased amounts of miR-22 and miR-17 from MON 52276 ingestion. Glyphosate decreased miR-30, whereas miR-10 levels were increased. DNA methylation profiling of liver revealed 5727 and 4496 differentially methylated CpG sites between the control and glyphosate and MON 52276 exposed animals, respectively. Apurinic/apyrimidinic DNA damage formation in liver was increased with glyphosate exposure. Altogether, our results show that Roundup formulations cause more biological changes linked with carcinogenesis than glyphosate. FULL TEXT

Malagoli et al., 2016

Malagoli, C., Costanzini, S., Heck, J. E., Malavolti, M., De Girolamo, G., Oleari, P., Palazzi, G., Teggi, S., & Vinceti, M.; “Passive exposure to agricultural pesticides and risk of childhood leukemia in an Italian community;” International Journal of Hygiene and Environmental Health, 2016, 219(8), 742-748; DOI: 10.1016/j.ijheh.2016.09.015.

ABSTRACT:

BACKGROUND: Exposure to pesticides has been suggested as a risk factor for childhood leukemia, but definitive evidence on this relation and the specific pesticides involved is still not clear.

OBJECTIVE: We carried out a population-based case-control study in a Northern Italy community to assess the possible relation between passive exposure to agricultural pesticides and risk of acute childhood leukemia.

METHODS: We assessed passive pesticide exposure of 111 childhood leukemia cases and 444 matched controls by determining density and type of agricultural land use within a 100-m radius buffer around children’s homes. We focused on four common crop types, arable, orchard, vineyard and vegetable, characterized by the use of specific pesticides that are potentially involved in childhood induced leukemia. The use of these pesticides was validated within the present study. We computed the odds ratios (OR) of the disease and their 95% confidence intervals (CI) according to type and density of crops around the children’s homes, also taking into account traffic pollution and high-voltage power line magnetic field exposure.

RESULTS: Childhood leukemia risk did not increase in relation with any of the crop types with the exception of arable crops, characterized by the use of 2.4-D, MCPA, glyphosate, dicamba, triazine and cypermethrin. The very few children (n=11) residing close to arable crops had an OR for childhood leukemia of 2.04 (95% CI 0.50-8.35), and such excess risk was further enhanced among children aged <5 years.

CONCLUSIONS: Despite the null association with most crop types and the statistical imprecision of the estimates, the increased leukemia risk among children residing close to arable crops indicates the need to further investigate the involvement in disease etiology of passive exposure to herbicides and pyrethroids, though such exposure is unlikely to play a role in the vast majority of cases. FULL TEXT

 

Rappazzo et al., 2018

Rappazzo, K. M., Warren, J. L., Davalos, A. D., Meyer, R. E., Sanders, A. P., Brownstein, N. C., & Luben, T. J.; “Maternal residential exposure to specific agricultural pesticide active ingredients and birth defects in a 2003-2005 North Carolina birth cohort;” Birth Defects Research, 2018; DOI: 10.1002/bdr2.1448.

ABSTRACT:

BACKGROUND: Previously we observed elevated odds ratios (ORs) for total pesticide exposure and 10 birth defects: three congenital heart defects and structural defects affecting the gastrointestinal, genitourinary and musculoskeletal systems. This analysis examines association of those defects with exposure to seven commonly applied pesticide active ingredients.

METHODS: Cases were live-born singleton infants from the North Carolina Birth Defects Monitoring Program linked to birth records for 2003-2005; noncases served as controls (total n = 304,906). Pesticide active ingredient exposure was assigned using a previously constructed metric based on crops within 500 m of residence, dates of pregnancy, and likely chemical application dates for each pesticide-crop combination. ORs (95% CI) were estimated with logistic regression for categories of exposure compared to unexposed. Models were adjusted for maternal race/ethnicity, age at delivery, education, marital status, and smoking status.

RESULTS: Associations varied by birth defect and pesticide combinations. For example, hypospadias was positively associated with exposures to 2,4-D (OR50th to <90th percentile : 1.39 [1.18, 1.64]), mepiquat (OR50th to <90th percentile : 1.10 [0.90, 1.34]), paraquat (OR50th to <90th : 1.14 [0.93, 1.39]), and pendimethalin (OR50th to <90th : 1.21 [1.01, 1.44]), but not S-metolachlor (OR50th to <90th : 1.00 [0.81, 1.22]). Whereas atrial septal defects were positively associated with higher levels of exposure to glyphosate, cyhalothrin, S-metolachlor, mepiquat, and pendimethalin (ORs ranged from 1.22 to 1.35 for 50th to <90th exposures, and 1.72 to 2.09 for >90th exposures); associations with paraquat were null or inconsistent (OR 50th to <90th: 1.05 (0.87, 1.27).

CONCLUSION: Our results suggest differing patterns of association for birth defects with residential exposure to seven pesticide active ingredients in North Carolina.

Rappazzo et al., 2018

Rappazzo, K. M., Warren, J. L., Davalos, A. D., Meyer, R. E., Sanders, A. P., Brownstein, N. C., & Luben, T. J.; “Maternal residential exposure to specific agricultural pesticide active ingredients and birth defects in a 2003-2005 North Carolina birth cohort;” Birth Defects Research, 2018; DOI: 10.1002/bdr2.1448.

ABSTRACT:

BACKGROUND: Previously we observed elevated odds ratios (ORs) for total pesticide exposure and 10 birth defects: three congenital heart defects and structural defects affecting the gastrointestinal, genitourinary and musculoskeletal systems. This analysis examines association of those defects with exposure to seven commonly applied pesticide active ingredients.

METHODS: Cases were live-born singleton infants from the North Carolina Birth Defects Monitoring Program linked to birth records for 2003-2005; noncases served as controls (total n = 304,906). Pesticide active ingredient exposure was assigned using a previously constructed metric based on crops within 500 m of residence, dates of pregnancy, and likely chemical application dates for each pesticide-crop combination. ORs (95% CI) were estimated with logistic regression for categories of exposure compared to unexposed. Models were adjusted for maternal race/ethnicity, age at delivery, education, marital status, and smoking status.

RESULTS: Associations varied by birth defect and pesticide combinations. For example, hypospadias was positively associated with exposures to 2,4-D (OR50th to <90th percentile : 1.39 [1.18, 1.64]), mepiquat (OR50th to <90th percentile : 1.10 [0.90, 1.34]), paraquat (OR50th to <90th : 1.14 [0.93, 1.39]), and pendimethalin (OR50th to <90th : 1.21 [1.01, 1.44]), but not S-metolachlor (OR50th to <90th : 1.00 [0.81, 1.22]). Whereas atrial septal defects were positively associated with higher levels of exposure to glyphosate, cyhalothrin, S-metolachlor, mepiquat, and pendimethalin (ORs ranged from 1.22 to 1.35 for 50th to <90th exposures, and 1.72 to 2.09 for >90th exposures); associations with paraquat were null or inconsistent (OR 50th to <90th: 1.05 (0.87, 1.27).

CONCLUSION: Our results suggest differing patterns of association for birth defects with residential exposure to seven pesticide active ingredients in North Carolina.

Benbrook and Benbrook, 2021

Benbrook, Charles, & Benbrook, Rachel (2021). “A minimum data set for tracking changes in pesticide use.” In R. Mesnage & J. Zaller (Eds.), Herbicides: Elsevier and RTI Press.

ABSTRACT:

A frequently asked but deceptively simple question often arises about pesticide use on a given farm or crop: Is pesticide use going up, down, or staying about the same? Where substantial changes in pesticide use are occurring, it is also important to understand the factors driving change. These might include more or fewer hectares planted, a change in the crop mix, a higher or lower percentage of hectares treated, or higher or lower rates of application and/or number of applications. Or, it might arise from a shift to other pesticides applied at a higher or lower rate and/or lessened or greater reliance on nonpesticidal strategies and integrated pest management (IPM). Questions about whether pesticide use is changing and why arise for a variety of reasons. Rising use typically increases farmer costs and cuts into profit margins. It generally raises the risk of adverse environmental and/or public health outcomes. It can accelerate the emergence and spread of organisms resistant to applied pesticides. If the need to spray more continues year after year for long enough, farming systems become unsustainable. Lessened reliance on and use of pesticides, on the other hand, are typically brought about and can only be sustained by incrementally more effective prevention-based biointensive IPM systems (bioIPM).1–3 Fewer pesticide applications and fewer pounds/kilograms of active ingredient applied reduce the impacts on nontarget organisms and provide space for beneficial organisms and biodiversity to flourish. Such systems reduce the odds of significant crop loss in years when conditions undermine the efficacy of control measures, leading to spikes in pest populations and the risk of economically meaningful loss of crop yield and/or quality. FULL TEXT

Milesi et al., 2021

Milesi, M. M., Lorenz, V., Durando, M., Rossetti, M. F., & Varayoud, J. “Glyphosate Herbicide: Reproductive Outcomes and Multigenerational Effects.” Frontiers in Endocrinology, 12. 2021; DOI:10.3389/fendo.2021.672532.

ABSTRACT:

Glyphosate base herbicides (GBHs) are the most widely applied pesticides in the world and are mainly used in association with GBH-tolerant crop varieties. Indiscriminate and negligent use of GBHs has promoted the emergence of glyphosate resistant weeds, and consequently the rise in the use of these herbicides. Glyphosate, the active ingredient of all GBHs, is combined with other chemicals known as co-formulants that enhance the herbicide action. Nowadays, the safety of glyphosate and its formulations remain to be a controversial issue, as evidence is not conclusive whether the adverse effects are caused by GBH or glyphosate, and little is known about the contribution of co-formulants to the toxicity of herbicides. Currently, alarmingly increased levels of glyphosate have been detected in different environmental matrixes and in foodstuff, becoming an issue of social concern. Some in vitro and in vivo studies have shown that glyphosate and its formulations exhibit estrogen-like properties, and growing evidence has indicated they may disrupt normal endocrine function, with adverse consequences for reproductive health. Moreover, multigenerational effects have been reported and epigenetic mechanisms have been proved to be involved in the alterations induced by the herbicide. In this review, we provide an overview of: i) the routes and levels of human exposure to GBHs, ii) the potential estrogenic effects of glyphosate and GBHs in cell culture and animal models, iii) their long-term effects on female fertility and mechanisms of action, and iv) the consequences on health of successive generations. FULL TEXT

Mesnage et al., 2021C

Mesnage R, Mazzacuva F, Caldwell A, Halket J, Antoniou MN. “Urinary excretion of herbicide co-formulants after oral exposure to roundup MON 52276 in rats.” Environmental Research. 2021 Jun;197:111103. DOI: 10.1016/j.envres.2021.111103.

ABSTRACT:

The toxicity of surfactants, which are an integral component of glyphosate-formulated products is an underexplored and highly debated subject. Since biomonitoring human exposure to glyphosate co-formulants is considered as a public health priority, we developed and validated a high-resolution mass spectrometry method to measure the urinary excretion of surfactants present in Roundup MON 52276, the European Union (EU) representative formulation of glyphosate-based herbicides. Quantification was performed measuring the 5 most abundant compounds in the mixture. We validated the method and showed that it is highly accurate, precise and reproducible with a limit of detection of 0.0004 μg/mL. We used this method to estimate the oral absorption of MON 52276 surfactants in Sprague-Dawley rats exposed to three concentrations of MON 52276 via drinking water for 90 days. MON 52276 surfactants were readily detected in urine of rats administered with this commercial Roundup formulation starting from a low concentration corresponding to the EU glyphosate acceptable daily intake. Our results provide a first step towards the implementation of surfactant co-formulant biomonitoring in human populations. FULL TEXT

Silver et al., 2021

Silver, M. K., Fernandez, J., Tang, J., McDade, A., Sabino, J., Rosario, Z., Velez Vega, C., Alshawabkeh, A., Cordero, J. F., & Meeker, J. D.; “Prenatal Exposure to Glyphosate and Its Environmental Degradate, Aminomethylphosphonic Acid (AMPA), and Preterm Birth: A Nested Case-Control Study in the PROTECT Cohort (Puerto Rico);” Environmental Health Perspectives, 2021, 129(5), 57011; DOI: 10.1289/EHP7295.

ABSTRACT:

BACKGROUND: Glyphosate (GLY) is the most heavily used herbicide in the world. Despite nearly ubiquitous exposure, few studies have examined prenatal GLY exposure and potentially adverse pregnancy outcomes. Preterm birth (PTB) is a risk factor for neonatal mortality and adverse health effects in childhood.

OBJECTIVES: We examined prenatal exposure to GLY and a highly persistent environmental degradate of GLY, aminomethylphosphonic acid (AMPA), and odds of PTB in a nested case-control study within the ongoing Puerto Rico Testsite for Exploring Contamination Threats (PROTECT) pregnancy cohort in northern Puerto Rico.

METHODS: GLY and AMPA in urine samples collected at 18+/-2 (Visit 1) and 26+/-2 (Visit 3) wk gestation (53 cases/194 randomly selected controls) were measured using gas chromatography tandem mass spectrometry. Multivariable logistic regression was used to estimate associations with PTB (delivery <37wk completed gestation).

RESULTS: Detection rates in controls were 77.4% and 77.5% for GLY and 52.8% and 47.7% for AMPA, and geometric means (geometric standard deviations) were 0.44 (2.50) and 0.41 (2.56) mug/L for GLY and 0.25 (3.06) and 0.20 (2.87) mug/L for AMPA, for Visits 1 and 3, respectively. PTB was significantly associated with specific gravity-corrected urinary GLY and AMPA at Visit 3, whereas associations with levels at Visit 1 and the Visits 1-3 average were largely null or inconsistent. Adjusted odds ratios (ORs) for an interquartile range increase in exposure at Visit 3 were 1.35 (95% CI: 0.99, 1.83) and 1.67 (95% CI: 1.26, 2.20) for GLY and AMPA, respectively. ORs for Visit 1 and the visit average were closer to the null.

DISCUSSION: Urine GLY and AMPA levels in samples collected near the 26th week of pregnancy were associated with increased odds of PTB in this modestly sized nested case-control study. Given the widespread use of GLY, multiple potential sources of AMPA, and AMPA’s persistence in the environment, as well as the potential for long-term adverse health effects in preterm infants, further investigation in other populations is warranted.

FULL TEXT

Kogevinas, 2021

Kogevinas, M.; “Glyphosate Exposure during Pregnancy and Preterm Birth (More Research Is Needed);” Environmental Health Perspectives, 2021, 129(5), 51301; DOI: 10.1289/EHP9428.

ABSTRACT:

Not Available

FULL TEXT

Ganesan and Keating, 2020

Ganesan, S., & Keating, A. F.; “Ovarian mitochondrial and oxidative stress proteins are altered by glyphosate exposure in mice;” Toxicology and Applied Pharmacology, 2020, 402, 115116; DOI: 10.1016/j.taap.2020.115116.

ABSTRACT:

Glyphosate (GLY) usage for weed control is extensive. To investigate ovarian impacts of chronic GLY exposure, female C57BL6 mice were orally administered saline as vehicle control (CT) or GLY at 0.25 (G0.25), 0.5 (G0.5), 1.0 (G1.0), 1.5 (G1.5), or 2 (G2.0) mg/kg for five days per wk. for 20 wks. Feed intake increased (P < .05) in G1.5 and G2.0 mice and body weight increased (P < .05) in G1.0 mice. There was no impact of GLY on estrous cyclicity, nor did GLY affect circulating levels of 17beta-estradiol or progesterone. Exposure to GLY did not impact heart, liver, spleen, kidney or uterus weight. Both ovarian weight and follicle number were increased (P < .05) by G2.0 but not affected at lower GLY concentrations. There were no detectable effects of GLY on ovarian protein abundance of pAKT, AKT, pAKT:AKT, gammaH2AX, STAR, CYP11A1, HSD3B, CYP19A, ERA or ERB. Increased (P < .05) abundance of ATM protein was observed at G0.25 but not higher GLY doses. A dose-dependent effect (P < .10) of GLY exposure on ovarian protein abundance as quantified by LC-MS/MS was observed (G0.25-4 increased, 19 decreased; G0.5-5 increased, 25 decreased; G1.0-65 increased, 7 decreased; G1.5-145 increased, 2 decreased; G2.0-159 increased, 4 decreased). Pathway analysis was performed using DAVID and identified glutathione metabolism, metabolic and proteasome pathways as GLY exposure targets. These data indicate that chronic low-level exposure to GLY alters the ovarian proteome and may ultimately impact ovarian function. FULL TEXT

Back To Top
Search