skip to Main Content

Bibliography Tag: genotoxicity

Rezende et al., 2021

Rezende, E.C.N., Carneiro, F.M., de Moraes, J.B. et al. “Trends in science on glyphosate toxicity: a scientometric study.” Environmental Science and Pollution Research 28, 56432–56448 (2021). DOI: 10.1007/s11356-021-14556-4

ABSTRACT:

As part of the most used herbicides, glyphosate is the most successful ingredient of agrochemical companies. The main objective of this study was to demonstrate research trends related to the glyphosate toxicity and its main effects on human and environmental health. For this purpose, 443 articles published, from 1995 to 2020, on the platform Web of Science™ Thomson Reuters were selected. The main toxicity results related in literature are genotoxicity, cytotoxicity, and endocrine disruption. The environmental effects come mostly from the contamination of groundwater and soils. Several studies have concluded that herbicide concentrations right below the official safety limits induced toxic effects. The results presented a highlighted harmful effect of glyphosate on both human and environmental health. It has been observed that countries where publish the most about the glyphosate toxicity are great investors in large-scale agriculture. It is important to ponder that these countries are in a route of ecosystem exploitation that includes not only fauna and flora, but also human beings. Unfortunately, science does not provide concise data for these pesticide disapproval in the global consumer market. It is necessary to search sustainable global interest alternatives to increase agriculture production based on peoples’ food sovereignty. FULL TEXT

Eaton et al., 2022

Eaton JL, Cathey AL, Fernandez JA, Watkins DJ, Silver MK, Milne GL, Velez-Vega C, Rosario Z, Cordero J, Alshawabkeh A, Meeker JD; “The association between urinary glyphosate and aminomethyl phosphonic acid with biomarkers of oxidative stress among pregnant women in the PROTECT birth cohort study;” Ecotoxicology and Environmental Safety, 2022, 233:113300; DOI: 10.1016/j.ecoenv.2022.113300.
ABSTRACT:

Background: Glyphosate is a widely used herbicide in global agriculture. Glyphosate and its primary environmental degradate, aminomethyl phosphonic acid (AMPA), have been shown to disrupt endocrine function and induce oxidative stress in in vitro and animal studies. To our knowledge, these relationships have not been previously characterized in epidemiological settings. Elevated urinary levels of glyphosate and AMPA may be indicative of health effects caused by previous exposure via multiple mechanisms including oxidative stress.

Methods: Glyphosate and AMPA were measured in 347 urine samples collected between 16 and 20 weeks gestation and 24-28 weeks gestation from pregnant women in the PROTECT birth cohort. Urinary biomarkers of oxidative stress, comprising 8-isoprostane-prostaglandin-F2α (8-iso-PGF2α), its metabolite 2,3-dinor-5,6-dihydro-15-F2 t-isoprostane (8-isoprostane metabolite) and prostaglandin-F2α (PGF2α), were also measured. Linear mixed effect models assessed the association between exposures and oxidative stress adjusting for maternal age, smoking status, alcohol consumption, household income and specific gravity. Potential nonlinear trends were also assessed using tertiles of glyphosate and AMPA exposure levels.

Results: No significant differences in exposure or oxidative stress biomarker concentrations were observed between study visits. An interquartile range (IQR) increase in AMPA was associated with 9.5% (95% CI: 0.5-19.3%) higher 8-iso-PGF2α metabolite concentrations. Significant linear trends were also identified when examining tertiles of exposure variables. Compared to the lowest exposure group, the second and third tertiles of AMPA were significantly associated with 12.8% (0.6-26.5%) and 15.2% (1.8-30.3%) higher 8-isoprostane metabolite, respectively. An IQR increase in glyphosate was suggestively associated with 4.7% (-0.9 to 10.7%) higher 8-iso-PGF2α.

Conclusions: Urinary concentrations of the main environmental degradate of glyphosate, AMPA, were associated with higher levels of certain oxidative stress biomarkers. Associations with glyphosate reflected similar trends, although findings were not as strong. Additional research is required to better characterize the association between glyphosate exposure and biomarkers of oxidative stress, as well as potential downstream health consequences.

FULL TEXT

Mesnage et al., 2021D

Robin Mesnage, Mariam Ibragim, Daniele Mandrioli, Laura Falcioni, Eva Tibaldi, Fiorella Belpoggi, Inger Brandsma, Emma Bourne, Emanuel Savage, Charles A Mein, Michael N Antoniou; “Comparative Toxicogenomics of Glyphosate and Roundup Herbicides by Mammalian Stem Cell-Based Genotoxicity Assays and Molecular Profiling in Sprague-Dawley Rats”, Toxicological Sciences, 2021; DOI: 10.1093/toxsci/kfab143.

ABSTRACT:

Whether glyphosate-based herbicides (GBHs) are more potent than glyphosate alone at activating cellular mechanisms, which drive carcinogenesis remain controversial. As GBHs are more cytotoxic than glyphosate, we reasoned they may also be more capable of activating carcinogenic pathways. We tested this hypothesis by comparing the effects of glyphosate with Roundup GBHs both in vitro and in vivo. First, glyphosate was compared with representative GBHs, namely MON 52276 (European Union), MON 76473 (United Kingdom), and MON 76207 (United States) using the mammalian stem cell-based ToxTracker system. Here, MON 52276 and MON 76473, but not glyphosate and MON 76207, activated oxidative stress and unfolded protein responses. Second, molecular profiling of liver was performed in female Sprague-Dawley rats exposed to glyphosate or MON 52276 (at 0.5, 50, and 175 mg/kg bw/day glyphosate) for 90 days. MON 52276 but not glyphosate increased hepatic steatosis and necrosis. MON 52276 and glyphosate altered the expression of genes in liver reflecting TP53 activation by DNA damage and circadian rhythm regulation. Genes most affected in liver were similarly altered in kidneys. Small RNA profiling in liver showed decreased amounts of miR-22 and miR-17 from MON 52276 ingestion. Glyphosate decreased miR-30, whereas miR-10 levels were increased. DNA methylation profiling of liver revealed 5727 and 4496 differentially methylated CpG sites between the control and glyphosate and MON 52276 exposed animals, respectively. Apurinic/apyrimidinic DNA damage formation in liver was increased with glyphosate exposure. Altogether, our results show that Roundup formulations cause more biological changes linked with carcinogenesis than glyphosate. FULL TEXT

Zhang et al., 2021

Zhang, H., Liu, J., Wang, L., & Zhai, Z.; “Glyphosate escalates horizontal transfer of conjugative plasmid harboring antibiotic resistance genes;” Bioengineered, 2021, 12(1), 63-69; DOI: 10.1080/21655979.2020.1862995.

ABSTRACT:

Glyphosate has been frequently detected in water environments because of the wide use for controlling weed in farm lands and urban areas. Presently, the focus of the majority of studies is placed on the toxicity of glyphosate on humans and animals. However, the effects of glyphosate on horizontal transfer of conjugative plasmid carrying antibiotic resistance gene (ARG) are largely unknown. Here, we explored the ability and potential mechanism of glyphosate for accelerating horizontal transfer of conjugative plasmid-mediated ARG. The results showed that glyphosate can effectively boost horizontal transfer rate of conjugative plasmid carrying ARG. The possible mechanism analysis demonstrated that over-production of reactive oxygen species and reactive nitrogen species effectively regulated expression levels of bacterial outer membrane protein and conjugative transfer-related genes, thereby resulting into elevated horizontal transfer rate of plasmid-mediated ARG. In conclusion, this study casts new understanding into the biological effects of glyphosate on ARG. FULL TEXT

Suppa et al., 2020

Suppa, A., Kvist, J., Li, X., Dhandapani, V., Almulla, H., Tian, A. Y., Kissane, S., Zhou, J., Perotti, A., Mangelson, H., Langford, K., Rossi, V., Brown, J. B., & Orsini, L.; “Roundup causes embryonic development failure and alters metabolic pathways and gut microbiota functionality in non-target species;” Microbiome, 2020, 8(1), 170; DOI: 10.1186/s40168-020-00943-5.

ABSTRACT:

BACKGROUND: Research around the weedkiller Roundup is among the most contentious of the twenty-first century. Scientists have provided inconclusive evidence that the weedkiller causes cancer and other life-threatening diseases, while industry-paid research reports that the weedkiller has no adverse effect on humans or animals. Much of the controversial evidence on Roundup is rooted in the approach used to determine safe use of chemicals, defined by outdated toxicity tests. We apply a system biology approach to the biomedical and ecological model species Daphnia to quantify the impact of glyphosate and of its commercial formula, Roundup, on fitness, genome-wide transcription and gut microbiota, taking full advantage of clonal reproduction in Daphnia. We then apply machine learning-based statistical analysis to identify and prioritize correlations between genome-wide transcriptional and microbiota changes.

RESULTS: We demonstrate that chronic exposure to ecologically relevant concentrations of glyphosate and Roundup at the approved regulatory threshold for drinking water in the US induce embryonic developmental failure, induce significant DNA damage (genotoxicity), and interfere with signaling. Furthermore, chronic exposure to the weedkiller alters the gut microbiota functionality and composition interfering with carbon and fat metabolism, as well as homeostasis. Using the “Reactome,” we identify conserved pathways across the Tree of Life, which are potential targets for Roundup in other species, including liver metabolism, inflammation pathways, and collagen degradation, responsible for the repair of wounds and tissue remodeling.

CONCLUSIONS: Our results show that chronic exposure to concentrations of Roundup and glyphosate at the approved regulatory threshold for drinking water causes embryonic development failure and alteration of key metabolic functions via direct effect on the host molecular processes and indirect effect on the gut microbiota. The ecological model species Daphnia occupies a central position in the food web of aquatic ecosystems, being the preferred food of small vertebrates and invertebrates as well as a grazer of algae and bacteria. The impact of the weedkiller on this keystone species has cascading effects on aquatic food webs, affecting their ability to deliver critical ecosystem services. FULL TEXT

van der Plaat et al., 2018

van der Plaat, Diana A., de Jong, Kim, de Vries, Maaike, van Diemen, Cleo C., Nedeljković, Ivana, Amin, Najaf, Kromhout, Hans, Vermeulen, Roel, Postma, Dirkje S., van Duijn, Cornelia M., Boezen, H. Marike, & Vonk, Judith M.; “Occupational exposure to pesticides is associated with differential DNA methylation;” Occupational and environmental medicine, 2018, 75(6), 427; DOI: 10.1136/oemed-2017-104787.

ABSTRACT:

OBJECTIVES: Occupational pesticide exposure is associated with a wide range of diseases, including lung diseases, but it is largely unknown how pesticides influence airway disease pathogenesis. a potential mechanism might be through epigenetic mechanisms, like Dna methylation. therefore, we assessed associations between occupational exposure to pesticides and genome-wide Dna methylation sites.

METHODS: 1561 subjects of lifelines were included with either no (n=1392), low (n=108) or high (n=61) exposure to any type of pesticides (estimated based on current or last held job). Blood Dna methylation levels were measured using illumina 450K arrays. associations between pesticide exposure and 420 938 methylation sites (cpgs) were assessed using robust linear regression adjusted for appropriate confounders. in addition, we performed genome-wide stratified and interaction analyses by gender, smoking and airway obstruction status, and assessed associations between gene expression and methylation for genome-wide significant cpgs (n=2802).

RESULTS: In total for all analyses, high pesticide exposure was genome-wide significantly (false discovery rate P<0.05) associated with differential Dna methylation of 31 cpgs annotated to 29 genes. twenty of these cpgs were found in subjects with airway obstruction. Several of the identified genes, for example, RYR1, ALLC, PTPRN2, LRRC3B, PAX2 and VTRNA2-1, are genes previously linked to either pesticide exposure or lungrelated diseases. Seven out of 31 cpgs were associated with gene expression levels.

CONCLUSIONS: We show for the first time that occupational exposure to pesticides is genome-wide associated with differential Dna methylation. Further research should reveal whether this differential methylation plays a role in the airway disease pathogenesis induced by pesticides.

FULL TEXT

Sanchez et al., 2018

Sanchez, M. C., Alvarez Sedo, C., Chaufan, G. R., Romanato, M., Da Cuna, R., Lo Nostro, F., Calvo, J. C., & Fontana, V.; “In vitro effects of endosulfan-based insecticides on mammalian sperm;” Toxicology Research, 2018, 7(1), 117-126; DOI: 10.1039/c7tx00251c.

ABSTRACT:

Endosulfan is an organochloride insecticide extensively used in several countries to protect crops from pests. As several studies indicate that endosulfan can affect human and animal development, the aim of this study was to analyse whether sperm parameters and the process of chromatin decondensation could be altered by endosulfan in mice sperm. Spermatozoa from cauda epididymis were obtained from mature male mice and incubated in the presence of two commercial formulations (CFs) of endosulfan (Master(R) and Zebra Ciagro(R)) or the active ingredient (AI) alone. A significant decrease in the percentage motility and viability of spermatozoa with respect to controls was found. In vitro decondensation was performed in the presence of glutathione and heparin. Spermatozoa incubated with the AI, endosulfan Master(R) and endosulfan Zebra Ciagro(R) showed an increase in chromatin decondensation. In addition, the TUNEL assay showed that DNA fragmentation was significantly higher when sperm were incubated with either one of the CFs when compared to the AI or controls. The ultrastructure analysis of sperm cells showed evident changes in the structure of the plasma and acrosome membranes of sperm incubated with endosulfan AI or the CFs. These results suggest that endosulfan can affect sperm integrity and in vitro chromatin decondensation as well as DNA fragmentation. FULL TEXT

Meftaul et al.; 2020

Meftaul, I. M., Venkateswarlu, K., Dharmarajan, R., Annamalai, P., Asaduzzaman, M., Parven, A., & Megharaj, M.; “Controversies over human health and ecological impacts of glyphosate: Is it to be banned in modern agriculture?;” Environmental Pollution, 2020, 263(Pt A), 114372; DOI: 10.1016/j.envpol.2020.114372.

ABSTRACT:

Glyphosate, introduced by Monsanto Company under the commercial name Roundup in 1974, became the extensively used herbicide worldwide in the last few decades. Glyphosate has excellent properties of fast sorption in soil, biodegradation and less toxicity to nontarget organisms. However, glyphosate has been reported to increase the risk of cancer, endocrine-disruption, celiac disease, autism, effect on erythrocytes, leaky-gut syndrome, etc. The reclassification of glyphosate in 2015 as ‘probably carcinogenic’ under Group 2A by the International Agency for Research on Cancer has been broadly circulated by anti-chemical and environmental advocacy groups claiming for restricted use or ban of glyphosate. In contrast, some comprehensive epidemiological studies involving farmers with long-time exposure to glyphosate in USA and elsewhere coupled with available toxicological data showed no correlation with any kind of carcinogenic or genotoxic threat to humans. Moreover, several investigations confirmed that the surfactant, polyethoxylated tallow amine (POEA), contained in the formulations of glyphosate like Roundup, is responsible for the established adverse impacts on human and ecological health. Subsequent to the evolution of genetically modified glyphosate-resistant crops and the extensive use of glyphosate over the last 45 years, about 38 weed species developed resistance to this herbicide. Consequently, its use in the recent years has been either restricted or banned in 20 countries. This critical review on glyphosate provides an overview of its behaviour, fate, detrimental impacts on ecological and human health, and the development of resistance in weeds and pathogens. Thus, the ultimate objective is to help the authorities and agencies concerned in resolving the existing controversies and in providing the necessary regulations for safer use of the herbicide. In our opinion, glyphosate can be judiciously used in agriculture with the inclusion of safer surfactants in commercial formulations sine POEA, which is toxic by itself is likely to increase the toxicity of glyphosate. FULL TEXT

Williams et al., 2000

Williams, G. M., Kroes, R., & Munro, I. C.; “Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans;” Regulatory Toxicology and Pharmacology, 2000, 31(2 Pt 1), 117-165; DOI: 10.1006/rtph.1999.1371.

ABSTRACT:

Reviews on the safety of glyphosate and Roundup herbicide that have been conducted by several regulatory agencies and scientific institutions worldwide have concluded that there is no indication of any human health concern. Nevertheless, questions regarding their safety are periodically raised. This review was undertaken to produce a current and comprehensive safety evaluation and risk assessment for humans. It includes assessments of glyphosate, its major breakdown product [aminomethylphosphonic acid (AMPA)], its Roundup formulations, and the predominant surfactant [polyethoxylated tallow amine (POEA)] used in Roundup formulations worldwide. The studies evaluated in this review included those performed for regulatory purposes as well as published research reports. The oral absorption of glyphosate and AMPA is low, and both materials are eliminated essentially unmetabolized. Dermal penetration studies with Roundup showed very low absorption. Experimental evidence has shown that neither glyphosate nor AMPA bioaccumulates in any animal tissue. No significant toxicity occurred in acute, subchronic, and chronic studies. Direct ocular exposure to the concentrated Roundup formulation can result in transient irritation, while normal spray dilutions cause, at most, only minimal effects. The genotoxicity data for glyphosate and Roundup were assessed using a weight-of-evidence approach and standard evaluation criteria. There was no convincing evidence for direct DNA damage in vitro or in vivo, and it was concluded that Roundup and its components do not pose a risk for the production of heritable/somatic mutations in humans. Multiple lifetime feeding studies have failed to demonstrate any tumorigenic potential for glyphosate. Accordingly, it was concluded that glyphosate is noncarcinogenic. Glyphosate, AMPA, and POEA were not teratogenic or developmentally toxic. There were no effects on fertility or reproductive parameters in two multigeneration reproduction studies with glyphosate. Likewise there were no adverse effects in reproductive tissues from animals treated with glyphosate, AMPA, or POEA in chronic and/or subchronic studies. Results from standard studies with these materials also failed to show any effects indicative of endocrine modulation. Therefore, it is concluded that the use of Roundup herbicide does not result in adverse effects on development, reproduction, or endocrine systems in humans and other mammals. For purposes of risk assessment, no-observed-adverse-effect levels (NOAELs) were identified for all subchronic, chronic, developmental, and reproduction studies with glyphosate, AMPA, and POEA. Margins-of-exposure for chronic risk were calculated for each compound by dividing the lowest applicable NOAEL by worst-case estimates of chronic exposure. Acute risks were assessed by comparison of oral LD50 values to estimated maximum acute human exposure. It was concluded that, under present and expected conditions of use, Roundup herbicide does not pose a health risk to humans.

Balderrama-Carmona et al., 2019

Balderrama-Carmona, A. P., Valenzuela-Rincon, M., Zamora-Alvarez, L. A., Adan-Bante, N. P., Leyva-Soto, L. A., Silva-Beltran, N. P., & Moran-Palacio, E. F.; “Herbicide biomonitoring in agricultural workers in Valle del Mayo, Sonora Mexico;” Environmental Science and Pollution Research International, 2019; DOI: 10.1007/s11356-019-07087-6.

ABSTRACT:

Valle del Mayo is an important agricultural area at the northwest of Mexico where up to 20,000 L of a mix composed of glyphosate and tordon is used in drains and canals. This study was carried out in order to evaluate the cellular damage caused by glyphosate, aminomethylphosphonic acid (AMPA), and picloram in agricultural workers. Biomonitoring was performed through the quantification of herbicides in urine using HPLC (high-performance liquid chromatography) to then evaluate the cellular damage in exposed people by means of an evaluation of micronuclei and cellular proliferation in lymphocyte cultures. The urine samples (n = 30) have shown a concentration of up to 10.25 mug/L of picloram and 2.23 mug/L of AMPA; no positive samples for glyphosate were reported. The calculation of the external dose reveals that agricultural workers ingest up to 146 mg/kg/day; however, this concentration does not surpass the limits that are allowed internationally. As for the results for the micronuclei test, 53% of the workers showed cellular damage, and the nuclear division index test reported that there was a significant difference (P < 0.05) between the exposed and the control population, which indicated that the exposure time to pesticides in the people of Valle del Mayo can induce alterations which can cause chronic damage. FULL TEXT

Back To Top
Search