skip to Main Content

Bibliography Tag: gastrointestinal impacts

Nielsen et al., 2018

Nielsen, L. N., Roager, H. M., Casas, M. E., Frandsen, H. L., Gosewinkel, U., Bester, K., Licht, T. R., Hendriksen, N. B., & Bahl, M. I.; “Glyphosate has limited short-term effects on commensal bacterial community composition in the gut environment due to sufficient aromatic amino acid levels;” Environmental Pollution, 2018, 233, 364-376; DOI: 10.1016/j.envpol.2017.10.016.

ABSTRACT:

Recently, concerns have been raised that residues of glyphosate-based herbicides may interfere with the homeostasis of the intestinal bacterial community and thereby affect the health of humans or animals. The biochemical pathway for aromatic amino acid synthesis (Shikimate pathway), which is specifically inhibited by glyphosate, is shared by plants and numerous bacterial species. Several in vitro studies have shown that various groups of intestinal bacteria may be differently affected by glyphosate. Here, we present results from an animal exposure trial combining deep 16S rRNA gene sequencing of the bacterial community with liquid chromatography mass spectrometry (LC-MS) based metabolic profiling of aromatic amino acids and their downstream metabolites. We found that glyphosate as well as the commercial formulation Glyfonova((R))450 PLUS administered at up to fifty times the established European Acceptable Daily Intake (ADI = 0.5 mg/kg body weight) had very limited effects on bacterial community composition in Sprague Dawley rats during a two-week exposure trial. The effect of glyphosate on prototrophic bacterial growth was highly dependent on the availability of aromatic amino acids, suggesting that the observed limited effect on bacterial composition was due to the presence of sufficient amounts of aromatic amino acids in the intestinal environment. A strong correlation was observed between intestinal concentrations of glyphosate and intestinal pH, which may partly be explained by an observed reduction in acetic acid produced by the gut bacteria. We conclude that sufficient intestinal levels of aromatic amino acids provided by the diet alleviates the need for bacterial synthesis of aromatic amino acids and thus prevents an antimicrobial effect of glyphosate in vivo. It is however possible that the situation is different in cases of human malnutrition or in production animals. FULL TEXT

Larsen et al., 2012

Larsen, K., Najle, R., Lifschitz, A., & Virkel, G.; “Effects of sub-lethal exposure of rats to the herbicide glyphosate in drinking water: glutathione transferase enzyme activities, levels of reduced glutathione and lipid peroxidation in liver, kidneys and small intestine;” Environmental Toxicology and Pharmacology, 2012, 34(3), 811-818; DOI: 10.1016/j.etap.2012.09.005.

ABSTRACT:

Glyphosate (GLP), the active ingredient of many weed killing formulations, is a broad spectrum herbicide compound. Wistar rats were exposed during 30 or 90 days to the highest level (0.7 mg/L) of GLP allowed in water for human consumption (US EPA, 2011) and a 10-fold higher concentration (7 mg/L). The low levels of exposure to the herbicide did not produce histomorphological changes. The production of TBARS was similar or tended to be lower compared to control animals not exposed to the herbicide. In rats exposed to GLP, increased levels of reduced glutathione (GSH) and enhanced glutathione peroxidase (GPx) activity may act as a protective mechanism against possible detrimental effects of the herbicide. Overall, this work showed certain biochemical modifications, even at 3-20-fold lower doses of GLP than the oral reference dose of 2mg/kg/day (US EPA, 1993). The toxicological significance of these findings remains to be clarified. FULL TEXT

Chlopecka et al., 2017

Chlopecka, M., Mendel, M., Dziekan, N., & Karlik, W.; “The effect of glyphosate-based herbicide Roundup and its co-formulant, POEA, on the motoric activity of rat intestine – In vitro study;” Environmental Toxicology and Pharmacology, 2017, 49, 156-162; DOI: 10.1016/j.etap.2016.12.010.

ABSTRACT:

The study was aimed at evaluating the effect of Roundup, polyoxyethylene tallow amine (POEA) and mixture of glyphosate and POEA in different levels on the motoric activity of jejunum strips. The incubation in the Roundup solutions caused a significant, mostly miorelaxant, reversible reaction of smooth muscle; only in the highest tested dose which is equivalent to the agricultural concentration (1% corresponding to 1.7g glyphosate/L) there was an irreversible disturbance of the spontaneous contractility and reactivity. The incubation in POEA solutions in the range of low doses (0.256; 1.28; 6.4mg/L) resulted in a biphasic muscle reaction (relaxation and contraction); whereas in the range of high doses, i.e. 32; 160 and 800mg/L (agricultural spray concentrations) induced only a miorelaxant, irreversible response. The results indicate very high toxicity of POEA which exceeds the toxicity of the commercial formulations. Besides, it is postulated that glyphosate and POEA may display antagonistic interaction towards the motoric activity of gastrointestinal tract. FULL TEXT

Back To Top
Search