skip to Main Content

Bibliography Tag: full text available

Benbrook, 2016c

John Peterson Myers, Michael N. Antoniou, Bruce Blumberg, Lynn Carroll, Theo Colborn, Lorne G. Everett, Michael Hansen, Philip J. Landrigan, Bruce P. Lanphear, Robin Mesnage, Laura N. Vandenberg, Frederick S. vom Saal, Wade V. Welshons and Charles M. Benbrook. “Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement,” Environmental Health, 2016, 15:19, DOI: 10.1186/s12940-016-0117-0.

ABSTRACT:

The broad-spectrum herbicide glyphosate (common trade name “Roundup”) was first sold to farmers in 1974. Since the late 1970s, the volume of glyphosate-based herbicides (GBHs) applied has increased approximately 100-fold. Further increases in the volume applied are likely due to more and higher rates of application in response to the widespread emergence of glyphosate-resistant weeds and new, pre-harvest, dessicant use patterns. GBHs were developed to replace or reduce reliance on herbicides causing well-documented problems associated with drift and crop damage, slipping efficacy, and human health risks. Initial industry toxicity testing suggested that GBHs posed relatively low risks to non-target species, including mammals, leading regulatory authorities worldwide to set high acceptable exposure limits. To accommodate changes in GBH use patterns associated with genetically engineered, herbicide-tolerant crops, regulators have dramatically increased tolerance levels in maize, oilseed (soybeans and canola), and alfalfa crops and related livestock feeds. Animal and epidemiology studies published in the last decade, however, point to the need for a fresh look at glyphosate toxicity. Furthermore, the World Health Organization’s International Agency for Research on Cancer recently concluded that glyphosate is “probably carcinogenic to humans.” In response to changing GBH use patterns and advances in scientific understanding of their potential hazards, we have produced a Statement of Concern drawing on emerging science relevant to the safety of GBHs. Our Statement of Concern considers current published literature describing GBH uses, mechanisms of action, toxicity in laboratory animals, and epidemiological studies. It also examines the derivation of current human safety standards. We conclude that: (1) GBHs are the most heavily applied herbicide in the world and usage continues to rise; (2) Worldwide, GBHs often contaminate drinking water sources, precipitation, and air, especially in agricultural regions; (3) The half-life of glyphosate in water and soil is longer than previously recognized; (4) Glyphosate and its metabolites are widely present in the global soybean supply; (5) Human exposures to GBHs are rising; (6) Glyphosate is now authoritatively classified as a probable human carcinogen; (7) Regulatory estimates of tolerable daily intakes for glyphosate in the United States and European Union are based on outdated science. We offer a series of recommendations related to the need for new investments in epidemiological studies, biomonitoring, and toxicology studies that draw on the principles of endocrinology to determine whether the effects of GBHs are due to endocrine disrupting activities. We suggest that common commercial formulations of GBHs should be prioritized for inclusion in government-led toxicology testing programs such as the U.S. National Toxicology Program, as well as for biomonitoring as conducted by the U.S. Centers for Disease Control and Prevention.  FULL TEXT

Benbrook, 2016b

Charles Benbrook, “Enhancements Needed in GE Crop and Food Regulation in the U.S.,” Frontiers in Public Health, March 31, 2016, DOI: 10.3389/FPUBH.2016.0059.

ABSTRACT:

Not Available

FULL TEXT

Perry, 2008

Melissa J. Perry, “Effects of environmental and occupational pesticide exposure on human sperm: a systematic review,” Human Reproduction Update, 2008, 14:3, DOI: 10.1093/HUMUPD/DMM039.

ABSTRACT:

Relatively recent discoveries of the hormone disrupting properties of some pesticides have raised interest in how contemporary pesticide exposures, which primarily take the form of low level environmental or occupational exposures, impact spermatogenesis. The objective of the present review was to summarize results to date of studies examining pesticide effects on human sperm. Outcomes evaluated included sperm parameters, DNA damage and numerical chromosome aberrations (aneuploidy (disomy, nullisomy) or diploidy). Studies investigating sperm in men environmentally and/or occupationally exposed to any types of pesticides were included in the review. The targeted literature search over the last 15 years showed a range of pesticide classes have been investigated including pyrethroids, organophosphates, phenoxyacetic acids, carbamates, organochlorines and pesticide mixtures. None of the studies involved acute exposure events such as chemical accidents. There were 20 studies evaluating semen quality, of which 13 studies reported an association between exposure and semen quality; 6 studies evaluating DNA damage, of which 3 reported an association with exposure; and 6 studies assessing sperm aneuploidy or diploidy, of which 4 reported an association with exposure. Studies varied widely in methods, exposures and outcomes. Although suggestive for semen parameters, the epidemiologic evidence accumulated thus far remains equivocal as to the spermatotoxic and aneugenic potential of pesticides given the small number of published studies. This question warrants more investigation and suggestions for future studies are outlined.  FULL TEXT

Young et al., 2013

Heather A Young, John D Meeker, Sheena E Martenies, Zaida I Figueroa, Dana Boyd Barr and Melissa J Perry, “Environmental exposure to pyrethroids and sperm sex chromosome disomy: a cross-sectional study,” Environmental  Health, 2013, 12:111, DOI: 10.1186/1476-069X-12-111.

ABSTRACT:

BACKGROUND: The role of environmental pesticide exposures, such as pyrethroids, and their relationship to sperm abnormalities are not well understood. This study investigated whether environmental exposure to pyrethroids was associated with altered frequency of sperm sex chromosome disomy in adult men.

METHODS: A sample of 75 subjects recruited through a Massachusetts infertility clinic provided urine and semen samples. Individual exposures were measured as urinary concentrations of three pyrethroid metabolites ((3-phenoxybenzoic acid (3PBA), cis- and trans- 3-(2,2-Dichlorovinyl)-1-methylcyclopropane-1,2-dicarboxylic acid (CDCCA and TDCCA)). Multiprobe fluorescence in situ hybridization for chromosomes X, Y, and 18 was used to determine XX, YY, XY, 1818, and total sex chromosome disomy in sperm nuclei. Poisson regression analysis was used to examine the association between aneuploidy rates and pyrethroid metabolites while adjusting for covariates.

RESULTS: Between 25-56% of the sample were above the limit of detection (LOD) for the pyrethroid metabolites. All sex chromosome disomies were increased by 7-30% when comparing men with CDCCA and TDCCA levels above the LOD to those below the LOD. For 3PBA, compared to those below the LOD, those above the LOD had YY18 disomy rates 1.28 times higher (95% CI: 1.15, 1.42) whereas a reduced rate was seen for XY18 and total disomy (IRR = 0.82; 95% CI: 0.77, 0.87; IRR = 0.93; 95% CI: 0.87-0.97), and no association was seen for XX18 and 1818.

CONCLUSIONS: Our findings suggest that urinary concentrations of CDCCA and TDCCA above the LOD were associated with increased rates of aneuploidy. However the findings for 3BPA were not consistent. This is the first study to examine these relationships, and replication of our findings is needed before the association between pyrethroid metabolites and aneuploidy can be fully defined.  FULL TEXT

Portier et al., 2016

Christopher J Portier, Bruce K Armstrong, Bruce C Baguley, Xaver Baur, Igor Belyaev, Robert Bellé, Fiorella Belpoggi, Annibale Biggeri, Maarten C Bosland, Paolo Bruzzi, Lygia Therese Budnik, Merete D Bugge, Kathleen Burns, Gloria M Calaf, David O Carpenter, Hillary M Carpenter, Lizbeth López-Carrillo, Richard Clapp, Pierluigi Cocco, Dario Consonni, Pietro Comba, Elena Craft, Mohamed Aqiel Dalvie, Devra Davis, Paul A Demers, Anneclaire J De Roos, Jamie DeWitt, Francesco Forastiere, Jonathan H Freedman, Lin Fritschi, Caroline Gaus, Julia M Gohlke, Marcel Goldberg, Eberhard Greiser, Johnni Hansen, Lennart Hardell, Michael Hauptmann, Wei Huang, James Huff, Margaret O James, C W Jameson, Andreas Kortenkamp, Annette Kopp-Schneider, Hans Kromhout, Marcelo L Larramendy, Philip J Landrigan, Lawrence H Lash, Dariusz Leszczynski, Charles F Lynch, Corrado Magnani, Daniele Mandrioli, Francis L Martin, Enzo Merler, Paola Michelozzi, Lucia Miligi, Anthony B Miller, Dario Mirabelli, Franklin E Mirer, Saloshni Naidoo, Melissa J Perry, Maria Grazia Petronio, Roberta Pirastu, Ralph J Portier, Kenneth S Ramos, Larry W Robertson, Theresa Rodriguez, Martin Röösli, Matt K Ross, Deodutta Roy, Ivan Rusyn, Paulo Saldiva, Jennifer Sass, Kai Savolainen, Paul T J Scheepers, Consolato Sergi, Ellen K Silbergeld, Martyn T Smith, Bernard W Stewart, Patrice Sutton, Fabio Tateo, Benedetto Terracini, Heinz W Thielmann, David B Thomas, Harri Vainio, John E Vena, Paolo Vineis, Elisabete Weiderpass, Dennis D Weisenburger, Tracey J Woodruff, Takashi Yorifuji, Il Je Yu, Paola Zambon, Hajo Zeeb,Shu-Feng Zhou, “Differences in the carcinogenic evaluation of glyphosate between the International Agency for Research on Cancer (IARC) and the European Food Safety Authority (EFSA),” Journal of Epidemiology and Community Health, 2016, 0:0, DOI: 10.1136/JECH-2015-207005.

ABSTRACT:

Not Available

FULL TEXT

 

Cimino et al., 2017

Andria M. Cimino, Abee L. Boyles, Kristina A. Thayer, and Melissa J. Perry, “Effects of Neonicotinoid Pesticide Exposure on Human Health: A Systematic Review,” Environmental Health Perspectives, 2017, 125:2, DOI: 10.1289/EHP515.

ABSTRACT:

BACKGROUND: Numerous studies have identified detectable levels of neonicotinoids (neonics) in the environment, adverse effects of neonics in many species, including mammals, and pathways through which human exposure to neonics could occur, yet little is known about the human health effects of neonic exposure.

OBJECTIVE: In this systematic review, we sought to identify human population studies on the health effects of neonics.

METHODS: Studies published in English between 2005 and 2015 were searched using PubMed, Scopus, and Web of Science databases. No restrictions were placed on the type of health outcome assessed. Risk of bias was assessed using guidance developed by the National Toxicology Program’s Office of Health Assessment and Translation.

RESULTS: Eight studies investigating the human health effects of exposure to neonics were identified. Four examined acute exposure: Three neonic poisoning studies reported two fatalities (n = 1,280 cases) and an occupational exposure study of 19 forestry workers reported no adverse effects. Four general population studies reported associations between chronic neonic exposure and adverse developmental or neurological outcomes, including tetralogy of Fallot (AOR 2.4, 95% CI: 1.1, 5.4), anencephaly (AOR 2.9, 95% CI: 1.0, 8.2), autism spectrum disorder [AOR 1.3, 95% credible interval (CrI): 0.78, 2.2], and a symptom cluster including memory loss and finger tremor (OR 14, 95% CI: 3.5, 57). Reported odds ratios were based on exposed compared to unexposed groups.

CONCLUSIONS: The studies conducted to date were limited in number with suggestive but methodologically weak findings related to chronic exposure. Given the wide-scale use of neonics, more studies are needed to fully understand their effects on human health.  FULL TEXT

Canadian Food Inspection Agency, 2017

Canadian Food Inspection Agency, “Safeguarding with Science: Glyphosate Testing in 2015-2016,” 2017, CFIA Science Branch Survey Report.

ABSTRACT:

In 2015-2016, the CFIA tested a total of 3,188 food samples for glyphosate. Glyphosate was found in 29.7% of samples. Glyphosate residues above MRLs were found in only 1.3% of samples. This data was evaluated by Health Canada and no human health concerns were identified.  FULL TEXT

Benbrook, 2016a

Charles M. Benbrook, “Trends in glyphosate herbicide use in the United States and globally,”  Environmental Sciences Europe, 2016, 28:3, DOI 10.1186/s12302-016-0070-0.

ABSTRACT:

BACKGROUND: Accurate pesticide use data are essential when studying the environmental and public health impacts of pesticide use. Since the mid-1990s, significant changes have occurred in when and how glyphosate herbicides are applied, and there has been a dramatic increase in the total volume applied.

METHODS: Data on glyphosate applications were collected from multiple sources and integrated into a dataset spanning agricultural, non-agricultural, and total glyphosate use from 1974–2014 in the United States, and from 1994–2014 globally.

RESULTS: Since 1974 in the U.S., over 1.6 billion kilograms of glyphosate active ingredient have been applied, or 19 % of estimated global use of glyphosate (8.6 billion kilograms). Globally, glyphosate use has risen almost 15-fold since so-called “Roundup Ready,” genetically engineered glyphosate-tolerant crops were introduced in 1996. Two-thirds of the total volume of glyphosate applied in the U.S. from 1974 to 2014 has been sprayed in just the last 10 years. The corresponding share globally is 72 %. In 2014, farmers sprayed enough glyphosate to apply ~1.0 kg/ha (0.8 pound/ acre) on every hectare of U.S.-cultivated cropland and nearly 0.53 kg/ha (0.47 pounds/acre) on all cropland worldwide.

CONCLUSIONS: Genetically engineered herbicide-tolerant crops now account for about 56 % of global glyphosate use. In the U.S., no pesticide has come remotely close to such intensive and widespread use. This is likely the case globally, but published global pesticide use data are sparse. Glyphosate will likely remain the most widely applied pesticide worldwide for years to come, and interest will grow in quantifying ecological and human health impacts. Accurate, accessible time-series data on glyphosate use will accelerate research progress.  FULL TEXT

Evans et al., 2015

Jeffrey A Evans, Patrick J Tranel, Aaron G Hager, Brian Schutte, Chenxi Wu,  Laura A Chatham, and Adam S Davis,  “Managing the evolution of herbicide resistance,” 2015, Pest Management Science, 72, DOI 10.1002/ps.4009.

ABSTRACT:

BACKGROUND: Understanding and managing the evolutionary responses of pests and pathogens to control efforts is essential to human health and survival. Herbicide-resistant (HR) weeds undermine agricultural sustainability, productivity and profitability, yet the epidemiology of resistance evolution – particularly at landscape scales – is poorly understood. We studied glyphosate resistance in a major agricultural weed, Amaranthus tuberculatus (common waterhemp), using landscape, weed and management data from 105 central Illinois grain farms, including over 500 site-years of herbicide application records.

RESULTS: Glyphosate-resistant (GR) A. tuberculatus occurrence was greatest in fields with frequent glyphosate applications, high annual rates of herbicide mechanism of action (MOA) turnover and few MOAs/field/year. Combining herbicide MOAs at the time of application by herbicide mixing reduced the likelihood of GR A. tuberculatus.

CONCLUSIONS: These findings illustrate the importance of examining large-scale evolutionary processes at relevant spatial scales. Although measures such as herbicide mixing may delay GR or other HR weed traits, they are unlikely to prevent them. Long-term weed management will require truly diversified management practices that minimize selection for herbicide resistance traits.  FULL TEXT

Vandenberg et al., 2017

Laura N Vandenberg, Bruce Blumberg, Michael N Antoniou, Charles M Benbrook, Lynn Carroll, Theo Colborn, Lorne G Everett, Michael Hansen, Philip J Landrigan, Bruce P Lanphear, Robin Mesnage, Frederick S vom Saal, Wade V Welshons, John Peterson Myers, “Is it time to reassess current safety standards for glyphosate-based herbicides?”,  Journal of Epidemiology and Community Health, 2017, 0, DOI: 10.113/jech-2016-208463.

ABSTRACT:

Use of glyphosate-based herbicides (GBHs) increased ∼100-fold from 1974 to 2014. Additional increases are expected due to widespread emergence of glyphosate-resistant weeds, increased application of GBHs, and preharvest uses of GBHs as desiccants. Current safety assessments rely heavily on studies conducted over 30 years ago. We have considered information on GBH use, exposures, mechanisms of action, toxicity and epidemiology. Human exposures to glyphosate are rising, and a number of in vitro and in vivo studies challenge the basis for the current safety assessment of glyphosate and GBHs. We conclude that current safety standards for GBHs are outdated and may fail to protect public health or the environment. To improve safety standards, the following are urgently needed: (1) human biomonitoring for glyphosate and its metabolites; (2) prioritisation of glyphosate and GBHs for hazard assessments, including toxicological studies that use state-of-the-art approaches; (3) epidemiological studies, especially of occupationally exposed agricultural workers, pregnant women and their children and (4) evaluations of GBHs in commercially used formulations, recognising that herbicide mixtures likely have effects that are not predicted by studying glyphosate alone.  FULL TEXT

Back To Top
Search