skip to Main Content

Bibliography Tag: full text available

Delcour et al., 2015

Delcour, Ilse, Spanoghe, Pieter, & Uyttendaele, Mieke; “Literature review: Impact of climate change on pesticide use;” Food Research International, 2015, 68, 7-15; DOI: 10.1016/j.foodres.2014.09.030.

ABSTRACT:

Agricultural yields strongly depend on crop protection measures. The main purpose of pesticide use is to increase food security, with a secondary goal being increased standard of living. In view of a changing climate, not only crop yields but also pesticide use is expected to be affected. Therefore, an analysis of the detailed effect of changing climatic variables on pesticide use is conducted. Not only effects on cultivated crops, occurring pests and pesticide efficiency are considered but also implications for technological development, regulations and the economic situation are included as all of these aspects can influence pesticide use. The objective of this review is to gain insights into the specific effect of climate change on the consumer exposure caused by pesticide residues on crops. In terms of climate change, temperature increase and changes in precipitation patterns are the main pest and pathogen infection determinants. An increased pesticide use is expected in form of higher amounts, doses, frequencies and different varieties or types of products applied. Climate change will reduce environmental concentrations of pesticides due to a combination of increased volatilization and accelerated degradation, both strongly affected by a high moisture content, elevated temperatures and direct exposure to sunlight. Pesticide dissipation seems also to be benefitted by higher amounts of precipitation. To overcome this, pesticide use might be changed. An adapted pesticide use will finally impact consumer exposure at the end of the food chain. FULL TEXT

Chodhury & Saha, 2021

Choudhury, P. P., & Saha, S.; “Dynamics of pesticides under changing climatic scenario;” Environmental Monitoring and Assessment, 2021, 192(Suppl 1), 814; DOI: 10.1007/s10661-020-08719-y.

ABSTRACT:

Not Available

FULL TEXT

Ziska, 2020

Ziska, Lewis H.; “Climate Change and the Herbicide Paradigm: Visiting the Future;” Agronomy, 2020, 10(12); DOI: 10.3390/agronomy10121953.

ABSTRACT:

Weeds are recognized globally as a major constraint to crop production and food security. In recent decades, that constraint has been minimized through the extensive use of herbicides in conjunction with genetically modified resistant crops. However, as is becoming evident, such a stratagem is resulting in evolutionary selection for widespread herbicide resistance and the need for a reformation of current practices regarding weed management. Whereas such a need is recognized within the traditional auspices of weed science, it is also imperative to include emerging evidence that rising levels of carbon dioxide (CO2) and climatic shifts will impose additional selection pressures that will, in turn, affect herbicide efficacy. The goal of the current perspective is to provide historical context of herbicide use, outline the biological basis for CO2/climate impacts on weed biology, and address the need to integrate this information to provide a long-term sustainable paradigm for weed management. FULL TEXT

Vilà et al., 2021

Vilà, Montserrat, Beaury, Evelyn M., Blumenthal, Dana M., Bradley, Bethany A., Early, Regan, Laginhas, Brittany B., Trillo, Alejandro, Dukes, Jeffrey S., Sorte, Cascade J. B., & Ibáñez, Inés; “Understanding the combined impacts of weeds and climate change on crops;” Environmental Research Letters, 2021, 16(3); DOI: 10.1088/1748-9326/abe14b.

ABSTRACT:

Crops worldwide are simultaneously affected by weeds, which reduce yield, and by climate change, which can negatively or positively affect both crop and weed species. While the individual effects of environmental change and of weeds on crop yield have been assessed, the combined effects have not been broadly characterized. To explore the simultaneous impacts of weeds with changes in climate-related environmental conditions on future food production, we conducted a meta-analysis of 171 observations measuring the individual and combined effects of weeds and elevated CO2, drought or warming on 23 crop species. The combined effect of weeds and environmental change tended to be additive. On average, weeds reduced crop yield by 28%, a value that was not significantly different from the simultaneous effect of weeds and environmental change (27%), due to increased variability when acting together. The negative effect of weeds on crop yield was mitigated by elevated CO2 and warming, but added to the negative effect of drought. The impact of weeds with environmental change was also dependent on the photosynthetic pathway of the weed/crop pair and on crop identity. Native and non-native weeds had similarly negative effects on yield, with or without environmental change. Weed impact with environmental change was also independent of whether the crop was infested with a single or multiple weed species. Since weed impacts remain negative under environmental change, our results highlight the need to evaluate the efficacy of different weed management practices under climate change. Understanding that the effects of environmental change and weeds are, on average, additive brings us closer to developing useful forecasts of future crop performance. FULL TEXT

Schulz et al., 2021

Schulz, R., Bub, S., Petschick, L. L., Stehle, S., & Wolfram, J.; “Applied pesticide toxicity shifts toward plants and invertebrates, even in GM crops;” Science, 2021, 372(6537), 81-84; DOI: 10.1126/science.abe1148.

ABSTRACT:

Pesticide impacts are usually discussed in the context of applied amounts while disregarding the large but environmentally relevant variations in substance-specific toxicity. Here, we systemically interpret changes in the use of 381 pesticides over 25 years by considering 1591 substance-specific acute toxicity threshold values for eight nontarget species groups. We find that the toxicity of applied insecticides to aquatic invertebrates and pollinators has increased considerably—in sharp contrast to the applied amount—and that this increase has been driven by highly toxic pyrethroids and neonicotinoids, respectively. We also report increasing applied toxicity to aquatic invertebrates and pollinators in genetically modified (GM) corn and to terrestrial plants in herbicide-tolerant soybeans since approximately 2010. Our results challenge the claims of a decrease in the environmental impacts of pesticide use. FULL TEXT

Ziska, 2016

Ziska, Lewis H.; “The role of climate change and increasing atmospheric carbon dioxide on weed management: Herbicide efficacy;” Agriculture, Ecosystems & Environment, 2016, 231, 304-309; DOI: 10.1016/j.agee.2016.07.014.

ABSTRACT: Rising concentrations of carbon dioxide [CO2] and a changing climate will almost certainly affect weed biology and demographics with consequences for crop productivity. The extent of such consequences could be minimal if weed management, particularly the widespread and effective use of herbicides, minimizes any future risk; but, such an outcome assumes that [CO2] or climate change will not affect herbicide efficacy per se. Is this a fair assumption? While additional data are greatly desired, there is sufficient information currently available to begin an initial assessment of both the physical and biological constraints likely to occur before, during and following herbicide application. The assessment provided here, while preliminary, reviews a number of physical and biological interactions that are likely, overall, to significantly reduce herbicide efficacy. These interactions can range from climatic extremes that influence spray coverage and field access to direct effects of [CO2] or temperature on plant biochemistry and morphology. Identification of these mechanisms will be essential to both understand and strengthen weed management strategies associated with rising levels of [CO2] in the context of an uncertain and rapidly changing climate.

Ziska, 2016

Ziska, Lewis H.; “The role of climate change and increasing atmospheric carbon dioxide on weed management: Herbicide efficacy;” Agriculture, Ecosystems & Environment, 2016, 231, 304-309; DOI: 10.1016/j.agee.2016.07.014.

ABSTRACT: Rising concentrations of carbon dioxide [CO2] and a changing climate will almost certainly affect weed biology and demographics with consequences for crop productivity. The extent of such consequences could be minimal if weed management, particularly the widespread and effective use of herbicides, minimizes any future risk; but, such an outcome assumes that [CO2] or climate change will not affect herbicide efficacy per se. Is this a fair assumption? While additional data are greatly desired, there is sufficient information currently available to begin an initial assessment of both the physical and biological constraints likely to occur before, during and following herbicide application. The assessment provided here, while preliminary, reviews a number of physical and biological interactions that are likely, overall, to significantly reduce herbicide efficacy. These interactions can range from climatic extremes that influence spray coverage and field access to direct effects of [CO2] or temperature on plant biochemistry and morphology. Identification of these mechanisms will be essential to both understand and strengthen weed management strategies associated with rising levels of [CO2] in the context of an uncertain and rapidly changing climate.

American College of Obstetricians and Gynecologists, 2014

The American College of Obstetricians and Gynecologists; “Health Disparities in Rural Women;” Committee Opinion, 2014, 586.

ABSTRACT:

Rural women experience poorer health outcomes and have less access to health care than urban women. Many rural areas have limited numbers of health care providers, especially women’s health providers. Rural America is heterogeneous where problems vary depending on the region and state. Health care professionals should be aware of this issue and advocate for reducing health disparities in rural women. FULL TEXT

Casey et al., 2004

Casey, Michelle M., Blewett, Lynn A., & Call, Kathleen T.; “Providing Health Care to Latino Immigrants: Community-Based Efforts in the Rural Midwest;” American Journal of Public Health, 2004, 94(10), 1709-1711; DOI: 10.2105/AJPH.94.10.1709.

ABSTRACT:

We examined case studies of 3 rural Midwestern communities to assess local health care systems response to rapidly growing Latino populations. Currently, clinics provide free or low-cost care, and schools, public health, social services, and religious organizations connect Latinos to the health care system. However, many unmet health care needs result from lack of health insurance, limited income, and linguistic and cultural barriers. Targeted safety net funding would help meet Latino health care needs in rural communities with limited resources.  FULL TEXT

Askelson et al., 2020

Askelson, N., Ryan, G., Pieper, F., Bash-Brooks, W., Rasmusson, A., Greene, M., & Buckert, A.; “Perspectives on Implementation: Challenges and Successes of a Program Designed to Support Expectant and Parenting Community College Students in Rural, Midwestern State;” Maternal Child Health Journal, 2020, 24(Suppl 2), 152-162; DOI: 10.1007/s10995-020-02879-6.

ABSTRACT:

OBJECTIVES: Expectant and parenting students (EPS) at community colleges are an underserved and often under-resourced group. In a rural, Midwestern state, the department of public health was awarded the Pregnancy Assistance Fund (PAF) grant to assist this population. This paper outlines the results of the implementation evaluation and offers suggestions for programs and evaluators working with this population in the community college setting.

METHODS: We conducted a multicomponent evaluation utilizing quantitative and qualitative methods. Evaluation activities included tracking activities/services, surveys and interviews with participants, and interviews with community college staff implementing grant activities. The research team calculated frequencies for quantitative data and coded qualitative data for themes.

RESULTS: Data from the community colleges and students’ self-reports revealed that EPS most commonly received concrete support from the program, often in the form of stipends or gift cards. Students reported that concrete support was beneficial and helped to relieve financial stress during the semester. Students’ major barriers to participation were lack of knowledge about the program and busy schedules that prevented them from accessing PAF services. Staff reported that difficulty identifying EPS and the short one-year project period were major implementation challenges.

CONCLUSIONS FOR PRACTICE: We recommend that community colleges work to identify EPS, use fellow EPS to recruit program participants, and implement programming that works with the students’ schedules.

FULL TEXT

Back To Top
Search