skip to Main Content

Bibliography Tag: full text available

Gaupp-Berghausen et. al, 2015

Mailin Gaupp-Berghausen, Martin Hofer, Boris Rewald, and Johann G. Zaller, “Glyphosate-based herbicides reduce the activity and reproduction of earthworms and lead to increased soil nutrient concentrations,” Nature: Scientific Reports, 2015, 5: 12886, DOI: 10.1038/srep12886.

ABSTRACT:

Herbicide use is increasing worldwide both in agriculture and private gardens. However, our earthworms, is still very scarce. In a greenhouse experiment, we assessed the impact of the most strategies. We demonstrate, that the surface casting activity of vertically burrowing earthworms (Lumbricus terrestris) almost ceased three weeks after herbicide application, while the activity of soil dwelling earthworms (Aporrectodea caliginosa) was reduced by 56% within three months after herbicide application. Herbicide application led to increased soil concentrations of nitrate by 1592% and phosphate by 127%, pointing to potential risks for nutrient leaching into streams, lakes, or groundwater aquifers. These sizeable herbicide-induced impacts on agroecosystems are particularly worrisome because these herbicides have been globally used for decades.  FULL TEXT

Ryberg and Gilliom, 2015

Karen R. Ryberg and Robert J. Gilliom, “Trends in pesticide concentrations and use for major rivers of the United States,”  Science of the Total Environment, 2015, 538: 431-444, DOI: /10.1016/j.scitotenv.2015.06.095.

ABSTRACT:

Trends in pesticide concentrations in 38 major rivers of the United States were evaluated in relation to use trends for 11 commonly occurring pesticide compounds. Pesticides monitored in water were analyzed for trends in concentration in three overlapping periods, 1992–2001, 1997–2006, and 2001–2010 to facilitate comparisons among sites with variable sample distributions over time and among pesticides with changes in use during different periods and durations. Concentration trends were analyzed using the SEAWAVE-Q model, which incorporates intra-annual variability in concentration and measures of long-term, mid-term, and short-term
streamflow variability. Trends in agricultural use within each of the river basins were determined using interval-censored regression with high and low estimates of use.
Pesticides strongly dominated by agricultural use (cyanazine, alachlor, atrazine and its degradate deethylatrazine, metolachlor, and carbofuran) had widespread agreement between concentration trends and use trends. Pesticides with substantial use in both agricultural and nonagricultural applications (simazine, chlorpyrifos, malathion, diazinon, and carbaryl) had concentration trends that were mostly explained by a combination of agricultural-use trends, regulatory changes, and urban use changes inferred from concentration trends in urban streams. When there were differences, concentration trends usually were greater than use trends (increased more or decreased less). These differences may occur because of such factors as unaccounted pesticide uses, delayed transport to the river through groundwater, greater uncertainty in the use data, or unquantified land use and management practice changes.  FULL TEXT

Brodeur et. al, 2016

Julie Celine Brodeur, Solene Malpel, Ana Belen Anglesio, Diego Cristos, María Florencia D’Andrea, María Belen Poliserpi, “Toxicities of glyphosate- and cypermethrin-based pesticides are antagonic in the tenspotted livebearer fish (Cnesterodon decemmaculatus),” Chemosphere, 2016, 155:429-435, DOI:  10.1016/j.chemosphere.2016.04.075.

ABSTRACT:

Although pesticide contamination of surface waters normally occurs in the form of mixtures, the toxicity and interactions displayed by such mixtures have been little characterized until now. The present study examined the interactions prevailing in equitoxic and non-equitoxic binary mixtures of formulations of glyphosate (Glifoglex®) and cypermethrin (Glextrin®) to the tenspotted livebearer (Cnesterodon decemmaculatus), a widely distributed South American fish. The following 96 h-LC50s were obtained when pesticide formulations were tested individually: Glifoglex® 41.4 and 53 mg ae glyphosate/L; Glextrin® 1.89 and 2.60 mg cypermethrin/L. Equitoxic and non-equitoxic mixtures were significantly antagonic in all combinations tested. The magnitude of the antagonism (factor by which toxicity differed from concentration addition) varied between 1.37 and 3.09 times in the different non-equitoxic mixtures tested. Antagonism was due to a strong inhibition of cypermethrin toxicity by the glyphosate formulation, the toxicity of the cypermethrin-based pesticide being almost completely overridden by the glyphosate formulation. Results obtained in the current study with fish are radically opposite to those previously observed in tadpoles where synergy was observed when Glifoglex® and Glextrin® were present in mixtures.  FULL TEXT

Ma et. al, 2015

Junguo Ma, Yanzhen Bu, Xiaoyu Li, “Immunological and histopathological responses of the kidney of common carp (Cyprinus carpio L.) sublethally exposed to glyphosate,” Environmental Toxicology and Pharmacology, 2015, 39: 1-8, DOI: 10.1016/j.etap.2014.11.004.

ABSTRACT:

Glyphosate is a broad-spectrum herbicide frequently used world widely in agricultural and non-agricultural areas to control unwanted plants. Health risk of chronic and subchronic exposure of glyphosate on animals and humans has received increasing attention in recent years. The aim of this study was to evaluate the effects of glyphosate on the immunoglobulin M (IgM), complement C3 (C3), and lysozyme (LYZ) in the kidney of common carp exposed to 52.08 or 104.15mg L−1 of glyphosate for 168h. The results showed that the transcriptions of IgM, C3, or LYZ were altered due to glyphosate-exposure, for example, IgM and C3 initially increased at 24h later it decreased (except for a increase of C3 in higher dose group at 24h) while the expression of G-type LYZ were not affected at 24h, then increased at 72h, but decreased at the end of test, however C-type LYZ expression was initially up-regulated (24–72h) but down-regulated at the end of exposure (168h). However, glyphosate-exposure generally decreased the contents of IgM and C3 or inhibited LYZ activity in the kidney of common carp. In addition, glyphosate-exposure also caused remarkable histopathological damage, mainly including vacuolization of the renal parenchyma and intumescence of the renaltubule in fish kidney. The results ofthis study indicate that glyphosate causes immunotoxicity on common carp via suppressing the expressions of IgM, C3, and LYZ and also via damaging the fish kidney.  FULL TEXT

Brodeur et. al, 2014

Julie Céline Brodeur, María Belén Poliserpi, María Florencia D’Andrea, Marisol Sánchez, “Synergy between glyphosate- and cypermethrin-based pesticides during acute exposures in tadpoles of the common South American Toad Rhinella arenarum,” Chemosphere, 2014, 112:70-76, DOI: 10.1016/j.chemosphere.2014.02.065.

ABSTRACT:

The herbicide glyphosate and the insecticide cypermethrin are key pesticides of modern management in soy and corn cultures. Although these pesticides are likely to co-occur in ephemeral ponds or aquatic systems supporting amphibian wildlife, the toxicological interactions prevailing in mixtures of these two pesticides have been little studied. The current study evaluated the toxicity of equitoxic and nonequitoxic binary mixtures of glyphosate- and cypermethrin-based pesticides to tadpoles of the common South American toad, Rhinella arenarum. Two different combinations of commercial products were tested: glyphosate Glifosato Atanor + cypermethrin Xiper and glyphosate Glifoglex + cypermethrin Glextrin. When tested individually, the formulations presented the following 96 h-LC50s: Glifosato Atanor 19.4 mg ae L1 and Glifoglex 72.8 mg ae L1 , Xiper 6.8 mg L1 and Glextrin 30.2 mg L1. Equitoxic and non-equitoxic mixtures were significantly synergic in both combinations of commercial products tested. The magnitude of the synergy (factor by which toxicity differed from concentration addition) was constant at around twofold for all tested proportions of the glyphosate Glifoglex + cypermethrin Glextrin mixture; whereas the magnitude of the synergy varied between 4 and 9 times in the glyphosate Glifosato Atanor + cypermethrin Xiper mixture. These results call for more research to be promptly undertaken in order to understand the mechanisms behind the synergy observed and to identify and quantify the extent of its environmental impacts.  FULL TEXT

Relyea, 2011

Rick A. Relyea, “Amphibians Are Not Ready for Roundup®,” in Wildlife Ecotoxicology: Forensic Approaches, J.E. Elliott et al. (eds.), 2011, DOI 10.1007/978-0-387-89432-4_9.

ABSTRACT:

The herbicide glyphosate, sold under a variety of commercial names including Roundup® and Vision® , has long been viewed as an environmentally friendly  herbicide. In the 1990s, however, after nearly 20 years of use, the first tests were conducted on the herbicide’s effects on amphibians in Australia. The researchers found that the herbicide was moderately toxic to Australian amphibians. The leading manufacturer of glyphosate-based herbicides, Monsanto, declared that the researchers were wrong. Nearly 10 years later, my research group began examining the effects of the herbicides on North American amphibians. Based on an extensive series of experiments, we demonstrated that glyphosate-based herbicides can be highly toxic to larval amphibians. Monsanto declared that we were also wrong. These experiments have formed the basis of a spirited debate between independent, academic researchers, and scientists that either work as consultants for Monsanto or have a vested interest in promoting the application of the herbicide to control undesirable plants in forests and agriculture. The debate also moved into unexpected arenas, including the use of glyphosate-based herbicides in the Colombian drug war in South America where a version of Roundup is being used to kill illegal coca plantations. In 2008, the US EPA completed a risk assessment for the effects of glyphosate-based herbicides on the endangered California red-legged frog (Rana aurora draytonii) and concluded that it could adversely affect the long-termpersistence of the species. More recent data from Colombia have confirmed that the herbicides not only pose a risk to tadpoles in shallow wetlands, but that typical applications rates also can kill up to 30% of adult frogs. As one reflects over the past decade, it becomes clear that our understanding of the possible effects of glyphosatebased herbicides on amphibians has moved from a position of knowing very little and assuming no harm to a position of more precise understanding of which concentrations and conditions pose a serious risk. FULL TEXT

Kaskey and Mulvany, 2016b

Jack Kaskey and Lydia Mulvany, “Creating a Problem- And a Lucrative Solution,”  Bloomberg, September 5, 2016.

SUMMARY:

Discusses the herbicide treadmill and how it has sparked the development of, and demand for, dicamba-resistant technology.  FULL TEXT

EPA, 2016a

Environmental Protection Agency, “COMPLIANCE ADVISORY: High Number of Complaints Related to Alleged Misuse of Dicamba Raises Concerns,” August 2016.

SUMMARY:

EPA and state agencies have received an unusually high number of reports of crop damage that appear related to misuse of herbicides containing the active ingredient dicamba. Investigations into the alleged misuse are ongoing. This Compliance Advisory is intended to provide information on the agricultural and compliance concerns raised by these incidents.  FULL TEXT

USDA, 2014

United States Department of Agriculture, “Monsanto Petitions (10-188-01p and 12-185-01p) for Determinations of  Nonregulated Status for Dicamba-Resistant Soybean and Cotton Varieties: Final Environmental Impact Statement,”
December 2014.

SUMMARY:

The U.S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS) received two requests (petitions) from Monsanto Company, St. Louis, MO (Monsanto) seeking determinations of nonregulated status for genetically engineered (GE) plant varieties referred to as MON 87708 soybean and MON 88701 cotton, that have been engineered to be resistant to the herbicide dicamba (Monsanto, 2012b; 2012a). These GE plant varieties are currently regulated by APHIS, and Monsanto requests that APHIS grant the petitions (Petition 10-188-01p for MON 87708 soybean and Petition 12-185-01p for MON 88701 cotton), so that these varieties can be grown without any APHIS regulatory oversight. Since these two GE plant varieties are currently under APHIS regulatory oversight, the Agency requires
Monsanto to comply with a full range of safeguarding measures to ensure that these regulated GE plant varieties do not transfer or spread from their APHIS-approved outdoor planting sites. APHIS authorization is also required to move these regulated varieties interstate. Once a developer of a GE plant has obtained sufficient information to conclude that its regulated GE plant is unlikely to cause injury, damage, or disease to plants or plant products (i.e., pose a plant pest risk), it may submit a petition to APHIS to no longer regulate the organism. This is referred to as seeking nonregulated status. If a petition for nonregulated status is approved by APHIS, permits or notifications are no longer required by the Agency to grow or ship the GE plant throughout the United States and its territories. If APHIS determines that nonregulated status is appropriate for one or both the Monsanto GE varieties, they will no longer be subject to any regulations pursuant to  Part 340.  FULL TEXT

Benbrook Consulting Services, 2016

Benbrook Consulting Services, Use of Dicamba on Crops as Surveyed by the National Agricultural Statistics Services (NASS), 2016.

SUMMARY:

Table detailing NASS reports of dicamba use (percent of total crop) and application rates.  FULL TEXT

Back To Top
Search