skip to Main Content

Bibliography Tag: full text available

Vermeulen et al., 2020

Vermeulen, R., Schymanski, E. L., Barabasi, A. L., & Miller, G. W.; “The exposome and health: Where chemistry meets biology;” Science, 2020, 367(6476), 392-396; DOI: 10.1126/science.aay3164.

ABSTRACT:

Despite extensive evidence showing that exposure to specific chemicals can lead to disease, current research approaches and regulatory policies fail to address the chemical complexity of our world. To safeguard current and future generations from the increasing number of chemicals polluting our environment, a systematic and agnostic approach is needed. The “exposome” concept strives to capture the diversity and range of exposures to synthetic chemicals, dietary constituents, psychosocial stressors, and physical factors, as well as their corresponding biological responses. Technological advances such as high-resolution mass spectrometry and network science have allowed us to take the first steps toward a comprehensive assessment of the exposome. Given the increased recognition of the dominant role that nongenetic factors play in disease, an effort to characterize the exposome at a scale comparable to that of the human genome is warranted. FULL TEXT

Topping et al., 2020

Topping, C. J., Aldrich, A., & Berny, P.; “Overhaul environmental risk assessment for pesticides;” Science, 2020, 367(6476), 360-363; DOI: 10.1126/science.aay1144.

SUMMARY:

Environmental risk assessment (ERA) of pesticides does not account for many stressors that have intensified in recent years, such as climate change, habitat destruction, and increasing landscape homogeneity, the combination of which can aggravate effects of pesticides in nature. We describe how several assumptions underlying ERA may not hold in modern intensive agricultural landscapes, and the interaction among assumption violations may account for observed declines in biodiversity. Using European contexts to exemplify these global concerns, we review how regulatory ERA for pesticides has fallen out of step with scientific knowledge and societal demands for sustainable food production and suggest systematic and recently feasible changes for regulation.  FULL TEXT

Escher et al., 2020

Escher, B. I., Stapleton, H. M., & Schymanski, E. L.; “Tracking complex mixtures of chemicals in our changing environment;” Science, 2020, 367(6476), 388-392; DOI: 10.1126/science.aay6636.

ABSTRACT:

Chemicals have improved our quality of life, but the resulting environmental pollution has the potential to cause detrimental effects on humans and the environment. People and biota are chronically exposed to thousands of chemicals from various environmental sources through multiple pathways. Environmental chemists and toxicologists have moved beyond detecting and quantifying single chemicals to characterizing complex mixtures of chemicals in indoor and outdoeor environments and biological matrices. We highlight analytical and bioanalytical approaches to isolating, characterizing, and tracking groups of chemicals of concern in complex matrices. Techniques that combine chemical analysis and bioassays have the potential to facilitate the identification of mixtures of chemicals that pose a combined risk.  FULL TEXT

Chung and Herceg, 2020

Chung, F. F., & Herceg, Z.; “The Promises and Challenges of Toxico-Epigenomics: Environmental Chemicals and Their Impacts on the Epigenome;” Environmental Health Perspectives, 2020, 128(1), 15001; DOI: 10.1289/EHP6104.

ABSTRACT:

BACKGROUND: It has been estimated that a substantial portion of chronic and noncommunicable diseases can be caused or exacerbated by exposure to environmental chemicals. Multiple lines of evidence indicate that early life exposure to environmental chemicals at relatively low concentrations could have lasting effects on individual and population health. Although the potential adverse effects of environmental chemicals are known to the scientific community, regulatory agencies, and the public, little is known about the mechanistic basis by which these chemicals can induce long-term or transgenerational effects. To address this question, epigenetic mechanisms have emerged as the potential link between genetic and environmental factors of health and disease.

OBJECTIVES: We present an overview of epigenetic regulation and a summary of reported evidence of environmental toxicants as epigenetic disruptors. We also discuss the advantages and challenges of using epigenetic biomarkers as an indicator of toxicant exposure, using measures that can be taken to improve risk assessment, and our perspectives on the future role of epigenetics in toxicology.

DISCUSSION: Until recently, efforts to apply epigenomic data in toxicology and risk assessment were restricted by an incomplete understanding of epigenomic variability across tissue types and populations. This is poised to change with the development of new tools and concerted efforts by researchers across disciplines that have led to a better understanding of epigenetic mechanisms and comprehensive maps of epigenomic variation. With the foundations now in place, we foresee that unprecedented advancements will take place in the field in the coming years.

FULL TEXT

Eng et al., 2019

Eng, M. L., Stutchbury, B. J. M., & Morrissey, C. A.; “A neonicotinoid insecticide reduces fueling and delays migration in songbirds;” Science, 2019, 365(6458), 1177-1180; DOI: 10.1126/science.aaw9419.

ABSTRACT:

Neonicotinoids are neurotoxic insecticides widely used as seed treatments, but little is known of their effects on migrating birds that forage in agricultural areas. We tracked the migratory movements of imidacloprid-exposed songbirds at a landscape scale using a combination of experimental dosing and automated radio telemetry. Ingestion of field-realistic quantities of imidacloprid (1.2 or 3.9 milligrams per kilogram body mass) by white-crowned sparrows (Zonotrichia leucophrys) during migratory stopover caused a rapid reduction in food consumption, mass, and fat and significantly affected their probability of departure. Birds in the high-dose treatment stayed a median of 3.5 days longer at the site of capture after exposure as compared with controls, likely to regain fuel stores or recover from intoxication. Migration delays can carry over to affect survival and reproduction; thus, these results confirm a link between sublethal pesticide exposure and adverse outcomes for migratory bird populations. FULL TEXT

DiBartolomeis et al., 2019

DiBartolomeis, M., Kegley, S., Mineau, P., Radford, R., & Klein, K.; “An assessment of acute insecticide toxicity loading (AITL) of chemical pesticides used on agricultural land in the United States;” Plos One, 2019, 14(8), e0220029; DOI: 10.1371/journal.pone.0220029.

ABSTRACT:

We present a method for calculating the Acute Insecticide Toxicity Loading (AITL) on US agricultural lands and surrounding areas and an assessment of the changes in AITL from 1992 through 2014. The AITL method accounts for the total mass of insecticides used in the US, acute toxicity to insects using honey bee contact and oral LD50 as reference values for arthropod toxicity, and the environmental persistence of the pesticides. This screening analysis shows that the types of synthetic insecticides applied to agricultural lands have fundamentally shifted over the last two decades from predominantly organophosphorus and N-methyl carbamate pesticides to a mix dominated by neonicotinoids and pyrethroids. The neonicotinoids are generally applied to US agricultural land at lower application rates per acre; however, they are considerably more toxic to insects and generally persist longer in the environment. We found a 48- and 4-fold increase in AITL from 1992 to 2014 for oral and contact toxicity, respectively. Neonicotinoids are primarily responsible for this increase, representing between 61 to nearly 99 percent of the total toxicity loading in 2014. The crops most responsible for the increase in AITL are corn and soybeans, with particularly large increases in relative soybean contributions to AITL between 2010 and 2014. Oral exposures are of potentially greater concern because of the relatively higher toxicity (low LD50s) and greater likelihood of exposure from residues in pollen, nectar, guttation water, and other environmental media. Using AITL to assess oral toxicity by class of pesticide, the neonicotinoids accounted for nearly 92 percent of total AITL from 1992 to 2014. Chlorpyrifos, the fifth most widely used insecticide during this time contributed just 1.4 percent of total AITL based on oral LD50s. Although we use some simplifying assumptions, our screening analysis demonstrates an increase in pesticide toxicity loading over the past 26 years, which potentially threatens the health of honey bees and other pollinators and may contribute to declines in beneficial insect populations as well as insectivorous birds and other insect consumers. FULL TEXT

Kasiotis and Machera, 2015

Kasiotis, K. M., & Machera, K.; “Neonicotinoids and their Metabolites in Human Biomonitoring: A Review;” Hellenic Plant Protection Journal, 2015, 8(2), 33-45; DOI: 10.1515/hppj-2015-0006.

ABSTRACT:

Neonicotinoids (NNDs) constitute a major class of insecticides with a broad and versatile spectrum of applications in agriculture. Hence, their residues are found in several environmental compartments and can be transferred via several pathways to numerous organisms. Despite their profound impact on honeybees and wild bees (impairment of memory, impact on immune system), their presence in humans is far less reported, possibly due to the low to moderate toxicological eff ects that they elicit. The aim of the present review is to emphasize on developments in the biomonitoring of NNDs. It focuses mainly on chromatographic analysis of NNDs and their metabolites in human biological fl uids, discussing key features, such as sample preparation and analytical method validation. Nonetheless, case reports regarding intoxication incidents are presented, highlighting the signifi cance of such cases especially in the developing world. FULL TEXT

Thomas et al., 2010

Thomas, K. W., Dosemeci, M., Hoppin, J. A., Sheldon, L. S., Croghan, C. W., Gordon, S. M., Jones, M. L., Reynolds, S. J., Raymer, J. H., Akland, G. G., Lynch, C. F., Knott, C. E., Sandler, D. P., Blair, A. E., & Alavanja, M. C.; “Urinary biomarker, dermal, and air measurement results for 2,4-D and chlorpyrifos farm applicators in the Agricultural Health Study;” Journal of Exposure Science and Environmental Epidemiology, 2010, 20(2), 119-134; DOI: 10.1038/jes.2009.6.

ABSTRACT:

A subset of private pesticide applicators in the Agricultural Health Study (AHS) epidemiological cohort was monitored around the time of their agricultural use of 2,4-dichlorophenoxyacetic acid (2,4-D) and O,O-diethyl-O-3,5,6-trichloro-2-pyridyl phosphorothioate (chlorpyrifos) to assess exposure levels and potential determinants of exposure. Measurements included pre- and post-application urine samples, and patch, hand wipe, and personal air samples. Boom spray or hand spray application methods were used by applicators for 2,4-D products. Chlorpyrifos products were applied using spray applications and in-furrow application of granular products. Geometric mean (GM) values for 69 2,4-D applicators were 7.8 and 25 microg/l in pre- and post-application urine, respectively (P<0.05 for difference); 0.39 mg for estimated hand loading; 2.9 mg for estimated body loading; and 0.37 microg/m(3) for concentration in personal air. Significant correlations were found between all media for 2,4-D. GM values for 17 chlorpyrifos applicators were 11 microg/l in both pre- and post-application urine for the 3,5,6-trichloro-2-pyridinol metabolite, 0.28 mg for body loading, and 0.49 microg/m(3) for air concentration. Only 53% of the chlorpyrifos applicators had measurable hand loading results; their median hand loading being 0.02 mg. Factors associated with differences in 2,4-D measurements included application method and glove use, and, for hand spray applicators, use of adjuvants, equipment repair, duration of use, and contact with treated vegetation. Spray applications of liquid chlorpyrifos products were associated with higher measurements than in-furrow granular product applications. This study provides information on exposures and possible exposure determinants for several application methods commonly used by farmers in the cohort and will provide information to assess and refine exposure classification in the AHS. Results may also be of use in pesticide safety education for reducing exposures to pesticide applicators. FULL TEXT

Barr et al., 2005

Barr, D. B., Allen, R., Olsson, A. O., Bravo, R., Caltabiano, L. M., Montesano, A., Nguyen, J., Udunka, S., Walden, D., Walker, R. D., Weerasekera, G., Whitehead, R. D., Jr., Schober, S. E., & Needham, L. L.; “Concentrations of selective metabolites of organophosphorus pesticides in the United States population;” Environmental Research, 2005, 99(3), 314-326; DOI: 10.1016/j.envres.2005.03.012.

ABSTRACT:

We report population-based concentrations (stratified by age, sex, and composite race/ethnicity variables) of selective metabolites of chlorpyrifos (3,5,6-trichloro-2-pyridinol; TCPY), chlorpyrifos methyl (TCPY), malathion (malathion dicarboxylic acid; MDA), diazinon (2-isopropyl-4-methyl-6-hydroxypyrimidine; IMPY), methyl parathion (para-nitrophenol; PNP), and parathion (PNP). We measured the concentrations of TCPY, MDA, IMPY, and PNP in 1997 urine samples from participants, aged 6-59 years, of the National Health and Nutrition Examination Survey, 1999-2000. We detected TCPY in more than 96% of the samples tested. Other organophosphorus pesticide metabolites were detected less frequently: MDA, 52%; IMPY, 29%; and PNP, 22%. The geometric means for TCPY were 1.77 microg/L and 1.58 microg/g creatinine. The 95th percentiles for TCPY were 9.9 microg/L and 8.42 microg/g creatinine. The 95th percentiles for MDA were 1.6 microg/L and 1.8 microg/g creatinine. The 95th percentiles for IMPY and PNP were 3.7 microg/L (3.4 microg/g creatinine) and 5.0 microg/L (4.2 microg/g creatinine), respectively. Multivariate analyses showed that children aged 6-11 years had significantly higher concentrations of TCPY than adults and adolescents. Similarly, adolescents had significantly higher TCPY concentrations than adults. Although the concentrations between sexes and among composite racial/ethnic groups varied, no significant differences were observed. FULL TEXT

Castorina et al., 2010

Castorina, R., Bradman, A., Fenster, L., Barr, D. B., Bravo, R., Vedar, M. G., Harnly, M. E., McKone, T. E., Eisen, E. A., & Eskenazi, B.; “Comparison of current-use pesticide and other toxicant urinary metabolite levels among pregnant women in the CHAMACOS cohort and NHANES;” Environmental Health Perspectives, 2010, 118(6), 856-863; DOI: 10.1289/ehp.0901568.

ABSTRACT:

BACKGROUND:

We measured 34 metabolites of current-use pesticides and other precursor compounds in urine samples collected twice during pregnancy from 538 women living in the Salinas Valley of California, a highly agricultural area (1999-2001). Precursors of these metabolites included fungicides, carbamate, organochlorine, organophosphorus (OP), and pyrethroid insecticides, and triazine and chloroacetanilide herbicides. We also measured ethylenethiourea, a metabolite of the ethylene-bisdithiocarbamate fungicides. Repeat measurements of the compounds presented here have not been reported in pregnant women previously. To understand the impact of the women’s regional environment on these findings, we compared metabolite concentrations from the CHAMACOS (Center for the Health Assessment of Mothers and Children of Salinas) cohort with U.S. national reference data for 342 pregnant women sampled by the National Health and Nutrition Examination Survey (1999-2002).

RESULTS:

The eight metabolites detected in > 50% of samples [2,4-dichlorophenol (2,4-DCP); 2,5-dichlorophenol (2,5-DCP); 1- and 2-naphthol; ortho-phenylphenol (ORTH); para-nitrophenol (PNP); 2,4,6-trichlorophenol (2,4,6-TCP); and 3,4,6-trichloro-2-pyridinol (TCPy)] may be related to home or agricultural pesticide use in the Salinas Valley, household products, and other sources of chlorinated phenols. More than 78% of women in this study had detectable levels of at least one of the OP pesticide-specific metabolites that we measured, and > 30% had two or more. The 95th percentile values of six of the most commonly detected (> 50%) compounds were significantly higher among the CHAMACOS women after controlling for age, race, socioeconomic status, and smoking [(2,4-DCP; 2,5-DCP; ORTH; PNP; 2,4,6-TCP; and TCPy); quantile regression p < 0.05].

CONCLUSIONS:

Findings suggest that the CHAMACOS cohort has an additional burden of precursor pesticide exposure compared with the national sample, possibly from living and/or working in an agricultural area. FULL TEXT

Back To Top
Search