skip to Main Content

Bibliography Tag: environmental impacts

Farina et al., 2019

Farina, W. M., Balbuena, M. S., Herbert, L. T., Mengoni Gonalons, C., & Vazquez, D. E.; “Effects of the Herbicide Glyphosate on Honey Bee Sensory and Cognitive Abilities: Individual Impairments with Implications for the Hive;” Insects, 2019, 10(10); DOI: 10.3390/insects10100354.

ABSTRACT:

The honeybee Apis mellifera is an important pollinator in both undisturbed and agricultural ecosystems. Its great versatility as an experimental model makes it an excellent proxy to evaluate the environmental impact of agrochemicals using current methodologies and procedures in environmental toxicology. The increase in agrochemical use, including those that do not target insects directly, can have deleterious effects if carried out indiscriminately. This seems to be the case of the herbicide glyphosate (GLY), the most widely used agrochemical worldwide. Its presence in honey has been reported in samples obtained from different environments. Hence, to understand its current and potential risks for this pollinator it has become essential to not only study the effects on honeybee colonies located in agricultural settings, but also its effects under laboratory conditions. Subtle deleterious effects can be detected using experimental approaches. GLY negatively affects associative learning processes of foragers, cognitive and sensory abilities of young hive bees and promotes delays in brood development. An integrated approach that considers behavior, physiology, and development allows not only to determine the effects of this agrochemical on this eusocial insect from an experimental perspective, but also to infer putative effects in disturbed environments where it is omnipresent. FULL TEXT

Pochron et al., 2019

Pochron, S., Simon, L., Mirza, A., Littleton, A., Sahebzada, F., & Yudell, M.; “Glyphosate but not Roundup(R) harms earthworms (Eisenia fetida);” Chemosphere, 2019, 241, 125017; DOI: 10.1016/j.chemosphere.2019.125017.

ABSTRACT:

Glyphosate is the active ingredient in Roundup(R) formulations. While multiple studies have documented the toxicity, environmental persistence, and tendency to spread for glyphosate and Roundup(R), few studies have compared the toxicity of glyphosate-based formulations to the toxicity of pure glyphosate for soil invertebrates, which contact both the herbicide and the formulations. Hundreds of formulations exist; their inert ingredients are confidential; and glyphosate persists in our food, water, and soil. In this experiment, we held glyphosate type and concentration constant, varying only formulation. Using Roundup Ready-to-Use III(R), Roundup Super Concentrate(R), and pure glyphosate, we delivered 26.3mg glyphosate in the form of isopropylamine salt per kg of soil to compost worms (Eisenia fetida). We found that worms living in soil spiked with pure glyphosate lost 14.8-25.9% of their biomass and survived a stress test for 22.2-33.3% less time than worms living in uncontaminated soil. Worms living in soil spiked with Roundup Ready-to-Use III(R) and Roundup Super Concentrate(R) did not lose body mass and survived the stress test as well as worms living in uncontaminated soil. No contaminant affected soil microbial or fungal biomass over the 40-day period of this experiment. We suggest that the nitrates and phosphates in the formulations offset the toxic effects of glyphosate by spurring microbial growth and speeding glyphosate degradation. We also found a 26.5-41.3% reduction in fungal biomass across all treatments over the course of this experiment, suggesting that the worms consumed fungi and spores. FULL TEXT

de Melo et al., 2019

de Melo, M. S., Nazari, E. M., Joaquim-Justo, C., Muller, Y. M. R., & Gismondi, E.; “Effects of low glyphosate-based herbicide concentrations on endocrine-related gene expression in the decapoda Macrobrachium potiuna;” Environmental Science and Pollution Research International, 2019, 26(21), 21535-21545; DOI: 10.1007/s11356-019-05496-1.

ABSTRACT:

Glyphosate-based herbicides (GBH) are the most used herbicides worldwide and are considered as endocrine-disrupting compounds (EDC) for non-target organisms. However, effects of GBH on their endocrine systems remain poorly understood. Thus, the aim of this study was to assess the effects of low concentrations of Roundup WG(R) on growth and reproduction process molecules in both males and females of the decapod crustacean Macrobrachium potiuna, by the relative transcript expression levels of the ecdysteroid receptor (EcR), the molt-inhibiting hormone (MIH), and the vitellogenin (Vg) genes. Prawns were exposed to three concentrations of GBH (0.0065, 0.065, and 0.28 mg L(-1)) for 7 and 14 days. The results revealed that only in males the three genes transcript levels were influenced by the GBH concentration, time of exposure, and the interaction between the concentrations and time of exposure, suggesting that males were more sensitive to GBH than females. For males, after 7 days of exposure at 0.065 mg L(-1), EcR and MIH were over-expressed, while the Vg expression was only over-expressed after 14 days. The present study highlighted that GBH impacted endocrine systems of M. potiuna. Moreover, EcR and MIH gene expressions could be promising EDC biomarkers of exposure in crustaceans. These results also indicate that GBH concentrations, considered secure by regulatory agencies, should be reviewed to minimize the effects on non-target organisms. FULL TEXT

Hued, 2012

Hued, Andrea Cecilia, Oberhofer, Sabrina, & de los Ángeles Bistoni, María; “Exposure to a Commercial Glyphosate Formulation (Roundup®) Alters Normal Gill and Liver Histology and Affects Male Sexual Activity of Jenynsia multidentata (Anablepidae, Cyprinodontiformes);” Archives of Environmental Contamination and Toxicology, 2012, 62(1), 107-117; DOI: 10.1007/s00244-011-9686-7.

ABSTRACT:

Roundup is the most popular commercial glyphosate formulation applied in the cultivation of genetically modified glyphosate-resistant crops. The aim of this study was to evaluate the histological lesions of the neotropical native fish, Jenynsia multidentata, in response to acute and subchronic exposure to Roundup and to determine if subchronic exposure to the herbicide causes changes in male sexual activity of individuals exposed to a sublethal concentration (0.5 mg/l) for 7 and 28 days. The estimated 96-h LC50 was 19.02 mg/l for both male and female fish. Gill and liver histological lesions were evaluated through histopathological indices allowing quantification of the histological damages in fish exposed to different concentrations of the herbicide. Roundup induced different histological alterations in a concentration-dependent manner. In subchronic-exposure tests, Roundup also altered normal histology of the studied organs and caused a significant decrease in the number of copulations and mating success in male fish exposed to the herbicide. It is expected that in natural environments contaminated with Roundup, both general health condition and reproductive success of J. multidenatata could be seriously affected.

Meshkini et al., 2018

Meshkini, S., Rahimi-Arnaei, M., & Tafi, A. A.; “The acute and chronic effect of Roundup herbicide on histopathology and enzymatic antioxidant system of Oncorhynchus mykiss;” International Journal of Environmental Science and Technology, 2018; DOI: 10.1007/s13762-018-2095-y.

ABSTRACT:

Unconventional and uncontrolled use of agricultural pesticides and their influence in aquatic ecosystems during drainage process causes the accumulation of these toxins in body tissues of fish, and finally, it endangers human health. In order to determine the amount of pollution of Roundup pesticide in aquatics, acute and chronic effects of this poison on gill, kidney, and liver tissues and biochemical activities of cerebral acetyl cholinesterase and liver catalase in rainbow trout (Oncorhynchus mykiss) were investigated. To determine LC50 of Roundup pesticide in rainbow trout, acute doses of Roundup were introduced to fish tanks and fish mortality was recorded for 96 h, and Roundup LC50 was determined using SPSS Probit test. Chronic doses were determined based on the obtained LC50, and the effects of these concentrations were assessed on gill, kidney and liver tissues and cerebral acetyl cholinesterase and liver catalase activities over 28 days. Based on histopathology results, the following changes were observed: adhesion of secondary lamellae, bending of secondary lamellae in gill tissue, glomerular wrinkling, dilatation of Bowman’s capsule space in kidney tissue and necrosis, cellular swelling, and lipid degeneration in liver tissue. Cerebral acetyl cholinesterase and liver catalase activities significantly reduced in groups exposed to Roundup herbicide compared to the control group (p < 0.05). Generally, chronic concentrations of Roundup herbicide cause undesirable tissue and enzymatic changes in antioxidant system of rainbow trout. Therefore, assessment of biochemical factors and histopathological studies can be used as biomarkers in tracing the effects of agricultural toxins on aquatic habitat.

Crall et al., 2018

Crall, James D, Switzer, Callin M, Oppenheimer, Robert L, Ford Versypt, Ashlee N, Dey, Biswadip, Brown, Andrea, Eyster, Mackay, Guerin, Claire, Pierce, Naomi E, Combes, Stacey A, & de Bivort, Benjamin L, “Neonicotinoid exposure disrupts bumblebee nest behavior, social networks, and thermoregulation,” Science, 2018, 362(6415), 683-686. DOI: 10.1126/science.aat1598.

ABSTRACT:

Neonicotinoid pesticides can negatively affect bee colonies, but the behavioral mechanisms by which these compounds impair colony growth remain unclear. Here, we investigate imidacloprid’s effects on bumblebee worker behavior within the nest, using an automated, robotic platform for continuous, multicolony monitoring of uniquely identified workers. We find that exposure to field-realistic levels of imidacloprid impairs nursing and alters social and spatial dynamics within nests, but that these effects vary substantially with time of day. In the field, imidacloprid impairs colony thermoregulation, including the construction of an insulating wax canopy. Our results show that neonicotinoids induce widespread disruption of within-nest worker behavior that may contribute to impaired growth, highlighting the potential of automated techniques for characterizing the multifaceted, dynamic impacts of stressors on behavior in bee colonies. FULL TEXT

Bai and Ogbourne, 2016

Bai, S. H., & Ogbourne, S. M., “Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination,” Environmental Science and Pollution Research, 2016, 23(19), 18988-19001. DOI: 10.1007/s11356-016-7425-3.

ABSTRACT:

Glyphosate has been the most widely used herbicide during the past three decades. The US Environmental Protection Agency (EPA) classifies glyphosate as ‘practically non-toxic and not an irritant’ under the acute toxicity classification system. This classification is based primarily on toxicity data and due to its unique mode of action via a biochemical pathway that only exists in a small number of organisms that utilise the shikimic acid pathway to produce amino acids, most of which are green plants. This classification is supported by the majority of scientific literature on the toxic effects of glyphosate. However, in 2005, the Food and Agriculture Organisation (FAO) reported that glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA), are of potential toxicological concern, mainly as a result of accumulation of residues in the food chain. The FAO further states that the dietary risk of glyphosate and AMPA is unlikely if the maximum daily intake of 1 mg kg(-1) body weight (bw) is not exceeded. Research has now established that glyphosate can persist in the environment, and therefore, assessments of the health risks associated with glyphosate are more complicated than suggested by acute toxicity data that relate primarily to accidental high-rate exposure. We have used recent literature to assess the possible risks associated with the presence of glyphosate residues in food and the environment. FULL TEXT

Slaby et al., 2019

Slaby, S., Titran, P., Marchand, G., Hanotel, J., Lescuyer, A., Lepretre, A., Bodart, J. F., Marin, M., & Lemiere, S., “Effects of glyphosate and a commercial formulation Roundup(R) exposures on maturation of Xenopus laevis oocytes,” Environmental Science and Pollution Research International, 2019. DOI: 10.1007/s11356-019-04596-2.

ABSTRACT:

Pesticides are often found at high concentrations in small ponds near agricultural field where amphibians are used to live and reproduce. Even if there are many studies on the impacts of phytopharmaceutical active ingredients in amphibian toxicology, only a few are interested in the earlier steps of their life cycle. While their populations are highly threatened with extinction. The aim of this work is to characterize the effects of glyphosate and its commercial formulation Roundup(R) GT Max on the Xenopus laevis oocyte maturation which is an essential preparation for the laying and the fertilization. Glyphosate is an extensively used herbicide, not only known for its effectiveness but also for its indirect impacts on non-target organisms. Our results showed that exposures to both forms of glyphosate delayed this hormone-dependent process and were responsible for spontaneous maturation. Severe and particular morphogenesis abnormalities of the meiotic spindle were also observed. The MAPK pathway and the MPF did not seem to be affected by exposures. The xenopus oocyte is particularly affected by the exposures and appears as a relevant model for assessing the effects of environmental contamination. FULL TEXT

Motta et al., 2018

Motta, Erick V S, Raymann, Kasie, & Moran, Nancy A, “Glyphosate perturbs the gut microbiota of honey bees,” Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(41), 10305-10310. DOI: 10.1073/pnas.1803880115.

ABSTRACT:

Glyphosate, the primary herbicide used globally for weed control, targets the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme in the shikimate pathway found in plants and some microorganisms. Thus, glyphosate may affect bacterial symbionts of animals living near agricultural sites, including pollinators such as bees. The honey bee gut microbiota is dominated by eight bacterial species that promote weight gain and reduce pathogen susceptibility. The gene encoding EPSPS is present in almost all sequenced genomes of bee gut bacteria, indicating that they are potentially susceptible to glyphosate. We demonstrated that the relative and absolute abundances of dominant gut microbiota species are decreased in bees exposed to glyphosate at concentrations documented in the environment. Glyphosate exposure of young workers increased mortality of bees subsequently exposed to the opportunistic pathogen Serratia marcescens. Members of the bee gut microbiota varied in susceptibility to glyphosate, largely corresponding to whether they possessed an EPSPS of class I (sensitive to glyphosate) or class II (insensitive to glyphosate). This basis for differences in sensitivity was confirmed using in vitro experiments in which the EPSPS gene from bee gut bacteria was cloned into Escherichia coli. All strains of the core bee gut species, Snodgrassella alvi, encode a sensitive class I EPSPS, and reduction in S. alvi levels was a consistent experimental result. However, some S. alvi strains appear to possess an alternative mechanism of glyphosate resistance. Thus, exposure of bees to glyphosate can perturb their beneficial gut microbiota, potentially affecting bee health and their effectiveness as pollinators. FULL TEXT

Klarich et al., 2017

Klarich, Kathryn L., Pflug, Nicholas C., DeWald, Eden M., Hladik, Michelle L., Kolpin, Dana W., Cwiertny, David M., & LeFevre, Gregory H., “Occurrence of Neonicotinoid Insecticides in Finished Drinking Water and Fate during Drinking Water Treatment,” Environmental Science & Technology Letters, 2017, 4(5), 168-173. DOI: 10.1021/acs.estlett.7b00081.

ABSTRACT:

Neonicotinoid insecticides are widespread in surface waters across the agriculturally intensive Midwestern United States. We report for the first time the presence of three neonicotinoids in finished drinking water and demonstrate their general persistence during conventional water treatment. Periodic tap water grab samples were collected at the University of Iowa over 7 weeks in 2016 (May−July) after maize/soy planting. Clothianidin, imidacloprid, and thiamethoxam were ubiquitously detected in finished water samples at concentrations ranging from 0.24 to 57.3 ng/L. Samples collected along the University of Iowa treatment train indicate no apparent removal of clothianidin or imidacloprid, with modest thiamethoxam removal (∼50%). In contrast, the concentrations of all neonicotinoids were substantially lower in the Iowa City treatment facility finished water using granular activated carbon (GAC) filtration. Batch experiments investigated potential losses. Thiamethoxam losses are due to base-catalyzed hydrolysis under high-pH conditions during lime softening. GAC rapidly and nearly completely removed all three neonicotinoids. Clothianidin is susceptible to reaction with free chlorine and may undergo at least partial transformation during chlorination. Our work provides new insights into the persistence of neonicotinoids and their potential for transformation during water treatment and distribution, while also identifying GAC as a potentially effective management tool for decreasing neonicotinoid concentrations in finished drinking water.

Back To Top
Search