skip to Main Content

Bibliography Tag: diversified weed management ipm

Gage et al., 2019

Gage, Karla L., Krausz, Ronald F., & Walters, S. Alan; “Emerging Challenges for Weed Management in Herbicide-Resistant Crops;” Agriculture, 2019, 9(8); DOI: 10.3390/agriculture9080180.

ABSTRACT:

Since weed management is such a critical component of agronomic crop production systems, herbicides are widely used to provide weed control to ensure that yields are maximized. In the last few years, herbicide-resistant (HR) crops, particularly those that are glyphosate-resistant, and more recently, those with dicamba (3,6-dichloro-2-methoxybenzoic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) resistance are changing the way many growers manage weeds. However, past reliance on glyphosate and mistakes made in stewardship of the glyphosate-resistant cropping systemhave directly led to the current weed resistance problems that now occur in many agronomic cropping systems, and new technologies must be well-stewarded. New herbicide-resistant trait technologies in soybean, such as dicamba-, 2,4-D-, and isoxaflutole- ((5-cyclopropyl-4-isoxazolyl)[2-(methylsulfonyl)-4-(trifluoromethyl)phenyl]methanone) resistance, are being combined with glyphosate- and glufosinate-resistance traits to manage herbicide-resistant weed populations. In cropping systems with glyphosate-resistant weed species, these new trait options may provide effective weed management tools, although there may be increased risk of off-target movement and susceptible plant damage with the use of some of these technologies. The use of diverse weed management practices to reduce the selection pressure for herbicide-resistant weed evolution is essential to preserve the utility of new traits. The use of herbicides with differing sites of action (SOAs), ideally in combination as mixtures, but also in rotation as part of a weed management program may slow the evolution of resistance in some cases. Increased selection pressure from the effects of some herbicide mixtures may lead to more cases of metabolic herbicide resistance. The most effective long-term approach for weed resistance management is the use of Integrated Weed Management (IWM) which may build the ecological complexity of the cropping system. Given the challenges in management of herbicide-resistant weeds, IWM will likely play a critical role in enhancing future food security for a growing global population. FULL TEXT

Davis and Frisvold, 2017

Adam S. Davis, George B. Frisvold, “Are herbicides a once in a century method of weed control?,” Pest Management Science, 2017, 73:11, DOI: 10.1002/ps.443.

ABSTRACT:

The efficacy of any pesticide is an exhaustible resource that can be depleted over time. For decades, the dominant paradigm – that weed mobility is low relative to insect pests and pathogens, that there is an ample stream of new weed control technologies in the commercial pipeline, and that technology suppliers have sufficient economic incentives and market power to delay resistance – supported a laissez faire approach to herbicide resistance management. Earlier market data bolstered the belief that private incentives and voluntary actions were sufficient to manage resistance. Yet, there has been a steady growth in resistant weeds, while no new commercial herbicide modes of action (MOAs) have been discovered in 30 years. Industry has introduced new herbicide tolerant crops to increase the applicability of older MOAs. Yet, many weed species are already resistant to these compounds. Recent trends suggest a paradigm shift whereby herbicide resistance may impose greater costs to farmers, the environment, and taxpayers than earlier believed. In developed countries, herbicides have been the dominant method of weed control for half a century. Over the next half-century, will widespread resistance to multiple MOAs render herbicides obsolete for many major cropping systems? We suggest it would be prudent to consider the implications of such a low-probability, but high-cost development.  FULL TEXT

Gould et al., 2018

Fred Gould, Zachary S. Brown, Jennifer Kuzma, “Wicked evolution: Can we address the sociobiological dilemma of pesticide resistance?,” Science, May 18, 2018, 360: 6390, DOI: 10.1126/science.aar3780.

ABSTRACT:

Resistance to insecticides and herbicides has cost billions of U.S. dollars in the agricultural sector and could result in millions of lives lost to insect-vectored diseases. We mostly continue to use pesticides as if resistance is a temporary issue that will be addressed by commercialization of new pesticides with novel modes of action. However, current evidence suggests that insect and weed evolution may outstrip our ability to replace outmoded chemicals and other control mechanisms. To avoid this outcome, we must address the mix of ecological, genetic, economic, and sociopolitical factors that prevent implementation of sustainable pest management practices. We offer an ambitious proposition.  FULL TEXT

Liebman et al., 2016

Matt Liebman, Bàrbara Baraibar, Yvonne Buckley, Dylan Childs, Svend Christensen, Roger Cousens, Hanan Eizenberg, Sanne Heijting, Donato Loddo, Aldo Merotto Jr, Michael Renton, Marleen Riemens, “Ecologically sustainable weed management: How do we get from proof-of-concept to adoption?,” Ecological Applications, 26:5, 2016, DOI: 10.1002/15-0995

ABSTRACT:

Weed management is a critically important activity on both agricultural and non‐agricultural lands, but it is faced with a daunting set of challenges: environmental damage caused by control practices, weed resistance to herbicides, accelerated rates of weed dispersal through global trade, and greater weed impacts due to changes in climate and land use. Broad‐scale use of new approaches is needed if weed management is to be successful in the coming era. We examine three approaches likely to prove useful for addressing current and future challenges from weeds: diversifying weed management strategies with multiple complementary tactics, developing crop genotypes for enhanced weed suppression, and tailoring management strategies to better accommodate variability in weed spatial distributions. In all three cases, proof‐of‐concept has long been demonstrated and considerable scientific innovations have been made, but uptake by farmers and land managers has been extremely limited. Impediments to employing these and other ecologically based approaches include inadequate or inappropriate government policy instruments, a lack of market mechanisms, and a paucity of social infrastructure with which to influence learning, decision‐making, and actions by farmers and land managers. We offer examples of how these impediments are being addressed in different parts of the world, but note that there is no clear formula for determining which sets of policies, market mechanisms, and educational activities will be effective in various locations. Implementing new approaches for weed management will require multidisciplinary teams comprised of scientists, engineers, economists, sociologists, educators, farmers, land managers, industry personnel, policy makers, and others willing to focus on weeds within whole farming systems and land management units. FULL TEXT

Westerman et al., 2005

Paula R. Westerman, Matt Liebman, Fabián D. Menalled, Andrew H. Heggenstaller, Robert G. Hartzler, Philip M. Dixon, “Are many little hammers effective? Velvetleaf (Abutilon theophrasti) population dynamics in two- and four-year crop rotation systems,” Weed Science, 53, 2005.

ABSTRACT:

To improve understanding of relationships between crop diversity, weed management practices, and weed population dynamics, we used data from a field experiment and matrix models to examine how contrasting crop rotations affect velvetleaf. We compared a 2-yr rotation system (corn-soybean) managed with conventional rates of herbicides with a 4-yr rotation (corn-soybean-triticale + alfalfa-alfalfa) that received 82% less herbicide. In November 2002, a pulse of velvetleaf seeds (500 seeds m⁻²) was added to 7- by 7-m areas within replicate plots of each crop phase-rotation system combination. Velvetleaf seed, seedling, and reproductive adult population densities, seed production, and seed losses to predators were measured during the next year. Velvetleaf seed production was greater in the 4-yr rotation than in the 2-yr rotation (460 vs. 16 seeds m⁻²). Averaged over 12 sampling periods from late May to mid-November 2003, loss of velvetleaf seeds to predators also was greater in the 4-yr rotation than in the 2-yr rotation (32 vs. 17% per 2 d). Modeling analyses indicated that velvetleaf density in the 4-yr rotation should decline if cumulative losses of seeds produced in the soybean phase exceeded 40%. Achieving such a level of predation appears possible, given the observed rates of velvetleaf seed predation. In addition, no tillage occurs in the 4-yr rotation for 26 mo after soybean harvest, thus favoring seed exposure on the soil surface to predators. Models that included estimates of seed predation indicated that to prevent increases in velvetleaf density, weed control efficacy in soybean must be ≥ 93% in the 2-yr rotation, but could drop to 86% in the 4-yr rotation. These results support the hypothesis that diverse rotations that exploit multiple stress and mortality factors, including weed seed predation, can contribute to effective weed suppression with less reliance on herbicides. FULL TEXT

Liebman, 2017

Matt Liebman, “Cultural techniques to manage weeds,” in Integrated weed management for sustainable agriculture, Ed: Robert Zimdahl, 2017, Burleigh Dodds Science Publishing.

SUMMARY:

The focus of this chapter is on cultural techniques that can also contribute to effective weed management strategies, including choice of crop density, crop arrangement, and crop genotype, and manipulation of initial crop size, soil fertility, and soil moisture conditions. Weed management strategies that make use of cultural factors seek to reduce weed density, resource consumption, biomass production and competition with crops. They also seek to prevent colonization of fields by weed species not previously present. Additionally, by altering the availability of light, water and nutrients in space and time, and by challenging weeds with allelochemicals, cultural tactics are intended to improve crop performance. FULL TEXT

Liebman and Gallandt, 1997

Matt Liebman and Eric Gallandt, “Many Little Hammers: Ecological Management of Crop-Weed Interactions,” In Ecology and Agriculture,” Ed: L.E. Jackson, 1997, Academic Press.

SUMMARY:

This is the first introduction of the phrase “many little hammers” to describe what is now known as integrated weed management, or IWM.  IWM relies on using a diverse assortment of weed control methods, possibly along with some herbicide use, along with changes in crop density and rotation to achieve weed control.  FULL TEXT

Liebman and Davis, 2009

Matt Liebman and Adam Davis, “Managing Weeds in Organic Farming Systems: An Ecological Approach,” In Organic Farming: The Ecological System, Ed: Charles Francis, 2009.

SUMMARY:

In this chapter, we describe major components of the weed management tool kit for organic farming, highlighting areas in which important advances have been made in the last decade. We then argue that instead of approaching the development of multitactic weed management strategies as a purely empirical, trial-and-error activity, the choice and deployment of weed management tactics should instead be informed by insights from ecological theory… Finally, we emphasize the need for ongoing dialog between empiricists and theoreticians and between scientists and farmers, so as to better direct scarce research resources and management time to where they are likely to be most beneficial. Multitactic weed management strategies informed by theory should be useful not just to organic farmers but also to conventional farmers who seek to reduce their reliance on herbicides due to concerns over herbicide resistance in weeds, rising production costs, and environmental and human health risks associated with herbicide exposure. FULL TEXT

Kremer and Means, 2009

Robert J. Kremer and Nathan E. Means, “Glyphosate and glyphosate-resistant crop interactions with rhizosphere microorganisms,” European Journal of Agronomy, 2009, 31:3, 153-161, DOI: 10.1016/j.eja.2009.06.004.

ABSTRACT:

Current crop production relies heavily on transgenic, glyphosate-resistant (GR) cultivars. Widespread cultivation of transgenic crops has received considerable attention. Impacts of glyphosate on rhizosphere microorganisms and activities are reviewed based on published and new data from long-term field projects documenting effects of glyphosate applied to GR soybean and maize. Field studies conducted in Missouri, U.S.A. during 1997–2007 assessed effects of glyphosate applied to GR soybean and maize on root colonization and soil populations of Fusarium and selected rhizosphere bacteria. Frequency of root-colonizing Fusarium increased significantly after glyphosate application during growing seasons in each year at all sites. Roots of GR soybean and maize treated with glyphosate were heavily colonized by Fusarium compared to non-GR or GR cultivars not treated with glyphosate. Microbial groups and functions affected by glyphosate included Mn transformation and plant availability; phytopathogen–antagonistic bacterial interactions; and reduction in nodulation. Root-exuded glyphosate may serve as a nutrient source for fungi and stimulate propagule germination. The specific microbial indicator groups and processes were sensitive to impacts of GR crops and are part of an evolving framework in developing polyphasic microbial analyses for complete assessment of GR technology that is more reliable than single techniques or general microbial assays.  FULL TEXT

 

Evans et al., 2015

Jeffrey A Evans, Patrick J Tranel, Aaron G Hager, Brian Schutte, Chenxi Wu,  Laura A Chatham, and Adam S Davis,  “Managing the evolution of herbicide resistance,” 2015, Pest Management Science, 72, DOI 10.1002/ps.4009.

ABSTRACT:

BACKGROUND: Understanding and managing the evolutionary responses of pests and pathogens to control efforts is essential to human health and survival. Herbicide-resistant (HR) weeds undermine agricultural sustainability, productivity and profitability, yet the epidemiology of resistance evolution – particularly at landscape scales – is poorly understood. We studied glyphosate resistance in a major agricultural weed, Amaranthus tuberculatus (common waterhemp), using landscape, weed and management data from 105 central Illinois grain farms, including over 500 site-years of herbicide application records.

RESULTS: Glyphosate-resistant (GR) A. tuberculatus occurrence was greatest in fields with frequent glyphosate applications, high annual rates of herbicide mechanism of action (MOA) turnover and few MOAs/field/year. Combining herbicide MOAs at the time of application by herbicide mixing reduced the likelihood of GR A. tuberculatus.

CONCLUSIONS: These findings illustrate the importance of examining large-scale evolutionary processes at relevant spatial scales. Although measures such as herbicide mixing may delay GR or other HR weed traits, they are unlikely to prevent them. Long-term weed management will require truly diversified management practices that minimize selection for herbicide resistance traits.  FULL TEXT

Back To Top
Search