skip to Main Content

Bibliography Tag: crop science

UW Extension, 2020

UW Extension, “Visual Guide to Corn Development,” Date Published: February 27, 2020, Date Accessed: April 16, 2020.

SUMMARY:

This guide to corn development hopes to make the stages easy to understand by using clear, annotated images that highlight the details of what is happening in the plant and potentially make the connection to sound management practices. Toss it in the glovebox and use it when scouting fields! The corn plants used were both greenhouse and field grown in south central Wisconsin using a 100–110 day relative maturity yellow dent hybrid with 20–21 leaves, silking at ~65 days after emergence and reaching maturity at ~60 days after silking. FULL TEXT

Esker and Proost, 2020

Paul Esker and Richard Proost, “What’s on your seed?,” University of Wisconsin Extension, 2020, Date accessed: 4/16/2020.

SUMMARY:

Seed treatments have been used for a number of years, mostly for protection against seedling diseases. However, there are a number of new seed treatments marketed for protection against a range of pests—including seedling diseases,
insects and nematodes—and even improving plant health.

The purpose of this publication is to take some of the confusion of seed treatments away, giving you a better understanding of what is on your seed. The list covers seed treatments registered in the state of Wisconsin for use on corn and/or soybean seed. The seed treatments are grouped by the number of active ingredients (1-4), treatment type (fungicide, insecticide, nematicide or plant growth regulator) and then alphabetically by the product trade name. The list is not based on efficacy of the seed treatments and is not an endorsement or criticism of one product over another.  FULL TEXT

Singh et al., 2020

Singh, Simranjeet, Kumar, Vijay, Datta, Shivika, Wani, Abdul Basit, Dhanjal, Daljeet Singh, Romero, Romina, & Singh, Joginder; “Glyphosate uptake, translocation, resistance emergence in crops, analytical monitoring, toxicity and degradation: a review;” Environmental Chemistry Letters, 2020; DOI: 10.1007/s10311-020-00969-z.

ABSTRACT:

The herbicide glyphosate is widely used to control weeds in grain crops. The overuse of glyphosate has induced issues such as contamination of surface water, decreased soils fertility, adverse effects on soil microbiota and possible incorporation in food chains. Here we review biochemical, agricultural, microbiological and analytical aspects of glyphosate. We discuss uptake, translocation, toxicity, degradation, complexation behaviour, analytical monitoring techniques and resistance emergence in crops. We provide data of glyphosate toxicity on different ecosystems. Experiments reveal that excessive glyphosate use induces stress on crops and on non-target plants, and is toxic for mammalians, microorganisms and invertebrates. The long half-life period of glyphosate and its metabolites under different environmental conditions is a major concern. Development of analytical methods for the detection of glyphosate is important because glyphosate has no chromophoric or fluorophoric groups. FULL TEXT

Xia et al., 2018

Xia, X., Sun, B., Gurr, G. M., Vasseur, L., Xue, M., & You, M.; “Gut Microbiota Mediate Insecticide Resistance in the Diamondback Moth, Plutella xylostella (L.);” Frontiers in Microbiology, 2018, 9, 25; DOI: 10.3389/fmicb.2018.00025.

ABSTRACT:

The development of insecticide resistance in insect pests is a worldwide concern and elucidating the underlying mechanisms is critical for effective crop protection. Recent studies have indicated potential links between insect gut microbiota and insecticide resistance and these may apply to the diamondback moth, Plutella xylostella (L.), a globally and economically important pest of cruciferous crops. We isolated Enterococcus sp. (Firmicutes), Enterobacter sp. (Proteobacteria), and Serratia sp. (Proteobacteria) from the guts of P. xylostella and analyzed the effects on, and underlying mechanisms of insecticide resistance. Enterococcus sp. enhanced resistance to the widely used insecticide, chlorpyrifos, in P. xylostella, while in contrast, Serratia sp. decreased resistance and Enterobacter sp. and all strains of heat-killed bacteria had no effect. Importantly, the direct degradation of chlorpyrifos in vitro was consistent among the three strains of bacteria. We found that Enterococcus sp., vitamin C, and acetylsalicylic acid enhanced insecticide resistance in P. xylostella and had similar effects on expression of P. xylostella antimicrobial peptides. Expression of cecropin was down-regulated by the two compounds, while gloverin was up-regulated. Bacteria that were not associated with insecticide resistance induced contrasting gene expression profiles to Enterococcus sp. and the compounds. Our studies confirmed that gut bacteria play an important role in P. xylostella insecticide resistance, but the main mechanism is not direct detoxification of insecticides by gut bacteria. We also suggest that the influence of gut bacteria on insecticide resistance may depend on effects on the immune system. Our work advances understanding of the evolution of insecticide resistance in this key pest and highlights directions for research into insecticide resistance in other insect pest species. FULL TEXT

Patterson et al., 2018

Patterson, E. L., Pettinga, D. J., Ravet, K., Neve, P., & Gaines, T. A.; “Glyphosate Resistance and EPSPS Gene Duplication: Convergent Evolution in Multiple Plant Species;” Journal of Heredity, 2018, 109(2), 117-125; DOI: 10.1093/jhered/esx087.

ABSTRACT:

One of the increasingly widespread mechanisms of resistance to the herbicide glyphosate is copy number variation (CNV) of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene. EPSPS gene duplication has been reported in 8 weed species, ranging from 3 to 5 extra copies to more than 150 extra copies. In the case of Palmer amaranth (Amaranthus palmeri), a section of >300 kb containing EPSPS and many other genes has been replicated and inserted at new loci throughout the genome, resulting in significant increase in total genome size. The replicated sequence contains several classes of mobile genetic elements including helitrons, raising the intriguing possibility of extra-chromosomal replication of the EPSPS-containing sequence. In kochia (Kochia scoparia), from 3 to more than 10 extra EPSPS copies are arranged as a tandem gene duplication at one locus. In the remaining 6 weed species that exhibit EPSPS gene duplication, little is known about the underlying mechanisms of gene duplication or their entire sequence. There is mounting evidence that adaptive gene amplification is an important mode of evolution in the face of intense human-mediated selection pressure. The convergent evolution of CNVs for glyphosate resistance in weeds, through at least 2 different mechanisms, may be indicative of a more general importance for this mechanism of adaptation in plants. CNVs warrant further investigation across plant functional genomics for adaptation to biotic and abiotic stresses, particularly for adaptive evolution on rapid time scales. FULL TEXT

Zhang et al., 2017b

Zhang, Ti , Johnson, Eric N., Mueller, Thomas C., & Willenborg, Christian J.; “Early Application of Harvest Aid Herbicides Adversely Impacts Lentil;” Agronomy Journal, 2017, 109(1), 239-248; DOI: 10.2134/agronj2016.07.0419.

ABSTRACT:

Applying harvest aid herbicides can dry down lentil (Lens culinaris Medik.) crops evenly and quickly, and can help control late-emerging weeds. However, improper application timing may reduce yield and quality, and leave unacceptable herbicide residues in seed, which can cause commercial issues when marketing lentil. The objective of this research was to determine the response of lentil to various application timings of glyphosate, saflufenacil, and the combination of these two herbicides. A field experiment consisting of a randomized complete block design was run at Saskatoon and Scott, SK, Canada in 2012, 2013, and 2014 to address the objective. Application of harvest aid herbicides before 30% seed moisture content reduced seed yield and thousand seed weight up to 25 and 8%, respectively. Moreover, application timings before 30% seed moisture resulted in lentil seed samples exceeding residue levels of 2.0 and 0.03 mg kg–1 for glyphosate and saflufenacil, respectively. Adding saflufenacil to glyphosate did not reduce glyphosate residue in lentil seed compared to glyphosate applied alone. However, this tank mixture significantly reduced seed residues of saflufenacil and improved crop desiccation compared with either glyphosate or saflufenacil applied alone. Our data lead us to conclude that a tank mix of saflufenacil+glyphosate should be recommended for crop desiccation and pre-harvest weed control in lentil over using either product alone. In addition, it is critical to ensure applications of glyphosate or saflufenacil are not made prior to 30% seed moisture in lentil crops. FULL TEXT

Zhang et al., 2017a

Zhang, Ti, Johnson, Eric N., & Willenborg, Christian J.; “Evaluation of Harvest-Aid Herbicides as Desiccants in Lentil Production;” Weed Technology, 2017, 30(3), 629-638; DOI: 10.1614/wt-d-16-00007.1.

ABSTRACT:

Desiccants are currently used to improve lentil dry-down prior to harvest. Applying desiccants at growth stages prior to maturity may result in reduced crop yield and quality, and leave unacceptable herbicide residues in seeds. There is little information on whether various herbicides applied alone or as a tank-mix with glyphosate have an effect on glyphosate residues in harvested seed. Field trials were conducted at Saskatoon and Scott, Saskatchewan, Canada, from 2012 to 2014 to determine whether additional desiccants applied alone or tank mixed with glyphosate improve crop desiccation and reduce the potential for unacceptable glyphosate residue in seed. Glufosinate and diquat tank mixed with glyphosate were the most consistent desiccants, providing optimal crop dry-down and a general reduction in glyphosate seed residues without adverse effects on seed yield and weight. Saflufenacil provided good crop desiccation without yield loss, but failed to reduce glyphosate seed residues consistently. Pyraflufen-ethyl and flumioxazin applied alone or tank mixed with glyphosate were found to be inferior options for growers as they exhibited slow and incomplete crop desiccation, and did not decrease glyphosate seed residues. Based on results from this study, growers should apply glufosinate or diquat with preharvest glyphosate to maximize crop and weed desiccation, and minimize glyphosate seed residues. FULL TEXT

Griffin et al., 2010

Griffin, James L., Boudreaux, Joseph M., & Miller, Donnie K.; “Herbicides As Harvest Aids;” Weed Science, 2017, 58(3), 355-358; DOI: 10.1614/ws-09-108.1.

ABSTRACT:

Herbicides used as harvest aids are applied at crop maturity to desiccate weed and crop foliage. Weeds present in the harvested crop can increase moisture content and foreign material, reducing grade and market price. Weeds can also delay the harvest operation and reduce harvest efficiency. Glyphosate can be used to desiccate weeds in glyphosate-resistant crops without concern for crop injury. Carfentrazone and pyraflufen-ethyl used as harvest aids can be effective in desiccating broadleaf weeds in corn and soybean. Paraquat, although effective on grass and broadleaf weeds when applied late season, can cause significant crop injury if applied too early. With expanded production of early maturing soybean cultivars in the mid-South (Arkansas, Louisiana, Mississippi, Missouri bootheel, and west Tennessee), presence of green stems, green pods, or green leaf retention, or combinations of these at harvest has increased. Interest in harvest aids has shifted to use as a crop desiccant. Paraquat also is an effective soybean desiccant, but application timing differs for indeterminate and determinate cultivars. Paraquat applied after soybean seed reached physiological maturity reduced number of green stems, pods, and retained green leaves present, allowing harvest to proceed 1 to 2 wk earlier than nontreated soybean. Seed moisture, foreign material, and seed damage also were reduced when paraquat was applied. FULL TEXT

Wigfield et al., 1994

Wigfield, Y. Y., Deneault, F., & Fillion, J.; “Residues of glyphosate and its principle metabolite in certain cereals, oilseeds, and pulses grown in Canada, 1990-1992;” Bulletin of Environmental Contamination and Toxicology, 1994, 53(4), 543-547; DOI: 10.1007/bf00199024.

ABSTRACT:

Glyphosate, sold under the trade names of Roundup R (for ground application) and Vision R (for forestry use), is a non-selective herbicide which is absorbed through the leaves and translocated throughout the whole plant. The herbicide, when applied close to harvest for late season weed control and possible harvest management benefits, can result in the presence of residues throughout the whole plant including the seed coat. In Canada, glyphosate is registered for pre-plant and post-harvest uses and until June 1991, it was not registered for direct application on crops. Diquat, a fast acting herbicide, is registered for desiccation of canola, mustard, field peas, flax, soybeans, and lentils. While diquat is effective as desiccant, it is not particularly effective in controlling perennial weeds and it is not registered for use on cereals. In June 1991, a temporary registration was granted for pre-harvest application on flax for control of quackgrass, seasonlong control of Canada thistle and perennial sow thistle and harvest management by drying down the crops. In June 1992, the same registration was granted for application on certain cereals (wheat and barley), oilseeds (canola/rapeseeds and soybeans) and pulses (peas and lentils), and in June, 1993 it was granted for malting barley. The pre-harvest use may also provide soil conservation benefits by reducing the use of cultivation as a means of weed control. The maximum residue limit (MRL) (Doliner and Stewart, 199 la) when crops are treated with the proposed label directions (single application at the rate of 0.89 kg/ha glyphosate and the time of 7-14 days before harvest) are shown in Table 1. Registration for use on beans has not been granted due to insufficient residue data.

However, because glyphosate is effective as herbicide and provides harvest management benefits, in 1990 questions were raised from Agriculture Canada field inspection staff regarding the potential misuse of the herbicide which at that time was not registered for pre-harvest use on crops. Thus a post-harvest survey was conducted to monitor glyphosate residues in these cereals, oilseeds and pulses grown during 1990-1992 period to check if the registration uses of glyphosate were being followed. This paper presents the 3-year monitoring results comprising 459 samples of 8 different crops grown in 7 different provinces in Canada. FULL TEXT

Pornprom et al., 2010

Pornprom, T., Sukcharoenvipharat, W., & Sansiriphun, D.; “Weed control with pre-emergence herbicides in vegetable soybean (Glycine max L. Merrill);” Crop Protection, 2010, 29(7), 684-690; DOI: 10.1016/j.cropro.2010.02.003.

ABSTRACT:

Field and laboratory experiments were conducted in the early and late rainy seasons in Thailand to evaluate the effect of pre-emergence application of herbicides and determine the herbicide residues on vegetable soybean (Glycine max L. Merrill cv. No. 75) production. No visible crop injury was observed after application of alachlor 469 g a.i./ha, clomazone 1080 g a.i./ha, metribuzin 525 g a.i./ha, pendimethalin 1031.25 g a.i./ha, tank-mixed clomazone 960 g a.i./ha þpendimethalin 928 g a.i./ha, or tank-mixed metribuzin 350 g a.i./haþ pendimethalin 928 g a.i./ha. However, acetochlor 1875 g a.i./ha, isoxaflutole 75 g a.i./ha, and oxadiazon 1000 g a.i./ha caused visible crop injury. Plant bioassay of herbicide residues in the soil after harvest showed no phytotoxic effect on baby corn (Zea mays Linn. cv. Suwan 3), cucumber (Cucumis sativus L. cv. Pijit 1), pak choi (Brassica chinensis Jusl. cv. Chinensis), and soybean (G. max L. Merrill cv. CM 60). Gas Chromatography-Mass Spectrometry (GC–MS) analysis showed no significant herbicide residues on crop yield (or MRLs< 0.01 ppm) for all herbicides used in this study. The application of metribuzin at 525 g a.i./ha was sufficient to provide satisfactory full-season control of several weed species and gave the highest crop yield. In addition, pendimethalin at 1031.25 g a.i./ha, and tankmixed metribuzin at 350 g a.i./ha þ pendimethalin at 928 g a.i./ha can provide a similar level of weed control as an alternative to reduce herbicide dosage thereby increasing food and environmental safety in vegetable soybean production. FULL TEXT

Back To Top
Search